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Abstract

Showing a hardware implementation of the Shin’s join algorithm, the paper illustrates
how the join algorithm efficiently filters out all the unnecessary tuples. In contrast to other join
algorithms, the Shin’s join algorithm allows join attribute comparisons after nearly one hundred
percent of the unnecessary tuples are eliminated. Using only fixed-size hash tables and
possessing an inherent characteristic of parallel processing, the Shin’s join algorithm is highly
recommendable above all other join algorithms.

The Shin’s join algorithm can be executed in various ways of parallel processing. The
algorithm is divided into two major processes: filtering and merging. The major processes can
be executed in parallel. Then, each major process can be further divided into subprocesses,
which, too, can be executed in parallel. This algorithm might be implemented in a database
computer for an efficient parallel execution of the two major processes. In an initial design
phase of a database computer-HIMOD, the join operation is performed by a general purpose
processor as a host and a parallel architecture join database coprocessor. The host performs the
merging process for the join while the join database coprocessor mainly performs the filtering
process for the join. The join database coprocessor is designed to be a speedy filter device
which further accelerates the join.

I. INTRODUCTION

Ever since the relational data model was introduced by E. F. Codd’s paper [CODD70]
in 1970, people have well recognized not only the naturalness of the two dimensional table
structure, but also the usefulness of the join relational operation. However, even if they change
the database management system in the future, people will still place emphasis on a solution to
massive cross-references from an input list to another. Thus, an optimal solution to the join will
be considered as the theory of massive cross-referencing. In addition, the join operation is
frequently used, and yet, very time-consuming. Therefore, increasing the speed of the join has
been a popular issue for more than 20 years.

One of the goals of our research was to provide an optimal algorithmic solution for the
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massive cross-references to accelerate the time-consuming join relational database operation. In
this paper, Shin’s algorithm will be described as a solution for the join. This study will compare
the Shin’s join algorithm with other join algorithms focusing on the question of their
effectiveness of parallel processing. The effectiveness of parallel processing in each join
algorithm can be considered as the chief means of improving the speed of the join operation.
The paper will also illustrate a filter device which uses the join algorithm to show how the join
algorithm can be implemented in hardware.

The join operation concatenates a tuple of the source relation (S) with a tuple of the target
relation (T) if the value(s) of the join attribute(s) in this pair of tuples satisfies a pre-specified
join condition, and it produces a tuple for the resulting relation (R). The join operation can be
illustrated in SQL using a SELECT-FROM-WHERE clause. When X.A is used to indicate that
attribute A from relation X is meant and X.* stands for all attributes of relation X, a simple
example of the join and the query the example is in Figure 1.

In 1977, Blasgen and Eswaran [BLAS77] described several methods for evaluating a
general query, involving project, select, and join relational database operations. They compared
the methods based on the number of accesses to secondary storage. In their examination of the
join operation, nested-loop and sort-merge algorithms were analyzed and discussed. Both join
algorithms will be discussed later in greater detail.

Based on the nested-loop and the sort-merge join methods, tuples will be carried until the
last moment, even though they may not be necessary to the resulting relation. Assuming that
the number of tuples in the source and target relations is large, but the number of resulting
tuples is small, then most of the tuples in the source and target relations may not be needed in
producing the output for the join. However, all of those irrelevant tuples are also brought to
main memory from secondary storage via the I/O channel. As a consequence the channel
becomes congested, which, in turn, creates the aforementioned I/O bottleneck. Many
researchers have broached designing a database filter for the join operation to reduce the
problem of channel congestion. CAFS [BABB79, SU81], for example, has been designed based
on the concept of database filtering.

Since the cost of the main memory has been substantially reduced, the potential of hash
join algorithms has received much recognition. DeWitt and Gerber said that the join algorithm
based on hashing is more advantageous than nested-loop or sort-merge join algorithms in terms
of speed [DEWI85]. However, the hash join algorithms are especially vulnerable to fluctuations
in memory availability because they rely heavily on main memory. For each hash join, the
requirement for buffer size and subset files is notoriously variable and unreliable. Join
algorithms, such as nested-loop, sort-merge, and hash, require frequent join attribute
comparisons which may result in more data movements. In 1988, the authors of this paper
realized that an optimal algorithmic solution for the join was yet to be found. The Shin’s join
algorithm is expected to resolve the problems of the currently exiting join algorithms.

In the Section II, the four aforementioned major join methods are illustrated: the nested-
loop join algorithm, the sort-merge join algorithm, the hash join algorithm, and the Shin’s join
algorithm. The time complexities and problems of join algorithms are discussed in Section III.
Section 1V describes HIMOD - a database computer that may effectively perform the Shin’s join
algorithm. Finally, in Section V we give concluding remarks and suggest some directions for
future research.



II. FOUR MAJOR JOIN ALGORITHMS

In this section, we give a brief overview of the algorithms published until now for the
join operation. We describe the approaches for the join in three separate subsections.

A. The Nested-Loop Join Algorithm

The nested-loop join method is the simplest among the three major algorithms. The two
relations involved in the join operation are called the outer relation (or source relation) S and
the inner relation (or target relation) T. Each tuple of S is compared with tuples of T over one
or more join attributes. If the join condition is satisfied, a tuple of S is concatenated with a
tuple of T to produce a tuple for the resulting relation R.

B. The Sort-Merge Join Algorithm

The source (S) relation and target (T) relation are retrieved, and their tuples are sorted
over one or more join attributes in subsequent phases using one of many sorting algorithms
(e.g., n-way merge). After the completion of the sorting operation, the two sorted streams of
tuples are merged together. During the merge operation, if a tuple of the relation S and a tuple
of the relation T satisfy the join condition, they are concatenated to form a resulting tuple.

C. The Hash Join Algorithm

The join attributes of the smaller input relation are first hashed by a hash function. The
hashed values are used to address entries of a hash table called buckets. The same hash function
is used for the join attributes of the larger input relation. If the join attribute of a tuple is hashed
into a non-empty bucket of the hash table and one of the join attributes stored in that bucket
matches with the join attribute, the equi-join condition is satisfied. The corresponding tuples
of the input relations are concatenated to form a tuple of the resulting relation. The process
continues until all the tuples of the larger relation have been processed.

D. The Shin’s Join Algorithm

Using a divide and conquer strategy, Shin’s join algorithm repeatedly divides the source
and target relations by a maximum of five functionally different hash coders and filters out
unnecessary tuples whenever possible. After completing a division (or hashing) process, the
algorithm checks whether or not the source tuples and the target tuples in a pair of source and
target buckets have an identical join attribute. If so, the source and target tuples in the pair of
buckets are then merged in order to produce tuples for the resulting relation. Otherwise, the
address of the current pair of source and target buckets is saved, and the source and target tuples
in the pair of buckets may be further divided by another functionally different hash coder. If
a bucket is empty and the corresponding bucket in the pair is not empty, the tuples in the
corresponding bucket are not necessary; thus, they are discarded. The algorithm continues
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dividing the tuples in a pair of buckets, merging the tuples, or eliminating unnecessary tuples
until every tuple in the buckets of created hash tables is either merged or eliminated.

A stack is an essential data structure of the SOFT (Stack Oriented Filter Technique) and
the Shin’s join algorithm as shown in Figure 2. Each stack item consists of a pair of two hash
tables: one for the source tuples and the other for the target tuples. The stack pointer keeps
track of the top item of the stack whenever a stack item is pushed into or popped from the top
of the stack. (Stacks in Figure 2 depict changes in the stack.) In the process of Shin’s join, a
maximum of five pairs of hash tables can be created. A source hash table includes 256 bucket
pointers for the linked lists of source tuples. A target hash table also includes 256 bucket
pointers for the linked lists of target tuples. One may choose proper numbers for the maximum
level of the stack and size of the hash table instead of using the stack level and table size
mentioned above (i.e., five and 256).

Assuming that both input relations fit in main memory, they are divided into a maximum
of 256 linked lists for each relation by the first hash coder, as shown in step 1 in Figure 2.
After the source and target tuples are hashed by the first hash coder, the tuples in the source
bucket (Si) can match, possibly, with only the tuples in the corresponding target bucket (Ti).
If an empty bucket exists, all tuples in the corresponding bucket would be eliminated since they
have no potential of being included in the resulting relation. If a DBMS has an insufficient main
memory space for input tuples, subset files will be used for the Si and Ti buckets that are not
able to reside in main memory.

As shown in step 2 in Figure 2, the join attribute values of the source tuples are hashed
by the second functionally different hash coder, and, as a result, the source tuples are stored in
addressed buckets in the source hash table. Using the same hash coder, the target tuples are
hashed and stored in the target hash table. While the tuples are being divided into a maximum
of 256 groups, the first produced hash address is compared with the subsequently produced hash
addresses to see if they are the same. If so, the source tuples and target tuples are merged.
Otherwise, four kinds of pairs of buckets (ij) may be created. The pairs will appear in the
following combinations:

(1) The source bucket (Sij) and the target bucket (Tij) are not empty.

(2) Sij is not empty, but Tij is empty.

(3) Tij is not empty, but Sij is empty.

(4) Sij and Tij are both empty.

When one of the two buckets is empty, the tuples in the corresponding bucket are unnecessary;
therefore, they are filtered out. The filtering scheme is one of the major concepts in Shin’s
SOFT.

Shin’s Join algorithm provides the termination condition to end further division process
as an idea for the SOFT. Whenever the tuples in the pair of source bucket and target bucket
are divided by a hash coder, the SOFT checks if the termination condition. If the produced hash
addresses in a group of source and target tuples are identical, the termination condition is
satisfied. Then the algorithm stops dividing the group and starts merging the source and target
tuples.

In parallel architecture filter unit of HIMOD database computer, a maximum of five
functionally different hash coders may be involved in checking the termination condition. If
their logical ANDed result show that only a single hash address is produced from each involved
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hash coder, the group of source and target tuples can be merged without final screening.

The Shin’s algorithm proceeds from the first pair of buckets (e.g., addressed 0) to the
last pair of buckets (e.g., addressed 255), checking that both source and target buckets are not
empty. When both buckets are not empty, the next bucket address is saved and the tuples in the
source bucket and the corresponding target bucket will be rehashed (or divided) by the next
functionally different hash coder. During the rehashing process, the algorithm compares the first
produced hash address with the others. If the produced hash addresses are identical, the tuples
are merged; otherwise, the tuples are divided further by another functionally different hash
coder.

Steps 3, 4, and 5 in Figure 2 can be explained similarly. In step 6, no available hash
coder is left and all unnecessary data have been filtered; therefore, the source and target tuples
are merged without being rehashed. As far as data structure is concerned, the linked list data
structure is better than the array data structure for the buckets in steps 2 through 5 in Figure 2
because in these steps most of the buckets can be empty. Therefore, by using the linked lists
for the buckets, memory space will be conserved.

In order to eliminate 100 percent (i.e., greater than 99.9999999999 % which is equal to
1 - 1/(256**5)) of the unnecessary data, join attributes are to be hashed by a maximum of five
functionally different hash coders to make certain that all produced hash addresses are the same.
Also, the multiple hash calculations can be effectively implemented using a parallel architecture
as discussed in the architecture of HIMOD. Therefore, two kinds of software implementation
of Shin’s join algorithm is left to one’s choice: a maximum of five hashings for each join
attribute at a time or a single hashing in each reading of a join attribute. If one uses the latter
for his software implementation, the filtering effect reaches more than 99.609375% (i.e., greater
than 255/256) and a final screening process is needed for the merge.

In this algorithm, the number of visits to the buckets is proportional to the number of
inputs; therefore, traversing the buckets in the hash tables is no cause for concern. In an actual
implementation of the algorithm, the bucket traversal may be accelerated if one uses suitable
registers to store bit value for each bucket to indicate whether or not the bucket is empty.

As shown in Figure 3, push and pop are the names of the procedures operating in the
stack. The procedure push inserts a pair of source and target hash tables onto the top of the
stack and increments the stack pointer. The procedure pop deletes a pair of source and target
hash tables from the top and decrements the stack pointer. The stack pointer always points to
the current pair of hash tables (the item at the top of the stack). By referring to the value in the
stack pointer, the function Bottom_Of _Stack can tell whether the stack pointer points to the first
(or the lowest) pair of hash tables as the current item of the stack.

In the Shin’s join algorithm, there are several other frequently used procedures such as
Assign_Source_And_Target, No_More_Next_Bucket_Addr, and Save_Next_Bucket_Addr. The
module Assign_Source_And_Target uses the header pointers of both source and target linked
lists based on the saved next bucket address of the current pair of hash tables in order that the
tuples in the linked lists are processed through the filter again. Each next bucket address is
incremented and saved to keep track of the subsequent bucket address. Whenever the procedure
Assign_Source_And_Target is called, another next bucket address, which has non-empty buckets
for both source and target hash tables, is found and saved by the procedure termed
Save_Next_Bucket Addr. As a result, the procedure push saves the contents of the current pair
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of hash tables and increments the stack pointer so that the next upper pair of hash tables may
become the current one or the top of the stack.

When pop is called, the stack pointer is decremented so that the pair of hash tables
directly under the current pair become the current pair of hash tables. After the pop, the
boolean function No More Next Bucket Addr should be called in order to see if there is any
saved next bucket address for the current pair of hash tables. If there is none, the current pair
of hash tables is checked to see if it is the first (or lowest) one. If so, the join process is
terminated by breaking the repeat loop.

The algorithm shown in Figure 3 is an explanatory version of the main module of a
simulation program [SHIN91] for the Shin’s join algorithm. The nature of recursion in the
algorithm simplifies the architectural structure of the database computer which implements the
Shin’s join algorithm. The nonrecursive implementation of the algorithm in Figure 3 is useful
and practical because the stack has only five items. The nonrecursive algorithm can also be
easily implemented in a microprogram.

III. DISCUSSION

When the number of tuples in the source relation (the smaller relation) is S, the number
of tuples in the target relation (the larger relation) is T, and the number of tuples in the resulting
relation is R, then the time complexity of nested-loop join algorithm is O(S*T). Since the upper
bound of S and T is N, O(S*T) can be expressed as O(N*N). The time complexity of the sort-
merge algorithm is O((S+T) log (S+T)). It can be represented as O(N log N) since the total
number of the input tuples (N) is S+T. Accordingly, in terms of the time complexity, one can
assume that the sort-merge join algorithm is superior to the nested-loop join algorithm.

To derive an asymptotic time complexity for hash join algorithm, the number of buckets
(B) in a hash table and the number of buckets in a divided hash range (D) are also considered
in addition to S, T, and R. The time complexity of the hash join algorithm is represented as
O((S+T)*(B/D) + R). In proportion to cheaper main memory cost, more memory space
becomes available; consequently, the number of repetitions for the hashing process (B/D) is
reduced as the value of D gets larger. Therefore, the time complexity for the hash join
algorithm can be simplified as O(S+T+R). Assuming that R is relatively smaller than S+T,
it becomes O(S+T). Since S+T is actually the total number of the input tuples(N), the time
complexity can be represented as O(N). It is believed that the time complexity of the join
operation cannot be better than O(N) since the join attribute in every input tuples must be read
at least once.

Considering actual performances, it is hard to rely only on the analysis of the asymptotic
time complexity when measuring the speed performance because of the number of accesses to
the secondary storage, 1/0 access time, the condition of interprocess communications, and
related overheads. However, in the future, when necessary hardware including main memory
is sufficiently provided, the time complexity will be more reliable and will be the most important
criteria.

When sufficient main memory is affordable, the hash-based join has the greatest
advantage [DEWI8S5, SCHN89, SHAP86]. The performance of the hash join algorithm is
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largely dependent on the distribution performance of a chosen hash function. If the chosen hash
function poorly distributes the tuples, the worst case may not be avoidable. Accordingly, the
dependence on a chosen hash function is absolute and large in the performance of the hash join
algorithm. In contrast to the hash join algorithm, the Shin’s join algorithm uses five functionally
different hash coders, so it is less dependent on the performance of a chosen hash coder than the
hash join algorithm.

The hash join algorithm usually requires a flexible size for the hash table for each
hashing process. Such flexibility of a hash table is not recommended for a hardware
implementation of hash table in a database machine. The amount of associated buffer space and
the number of involved subset files will be so fluctuated that the performance of the hash join
algorithm is not as stable as that of the Shin’s join algorithm. The fluctuations in main memory
consumption is a serious drawback to stabilizing database systems [PANG93]. A complicated
bucket tuning process (as a way of resolving this problem) can make the join more complex and
cumbersome. The bucket tuning process do not provide the best remedy for the problem of the
hash join, because it works only after the whole hash table is built.

Another problem resides in the frequent join attribute comparisons of the hash join
algorithm. The architecture of the database computer that implements the join attribute
comparison may be complex. Join attribute comparisons will include the comparisons for
unnecessary tuples which will not be included in a resulting relation. A join attribute
comparison takes a much longer time than the hashing of a join attribute takes. An effective
hardware hash coder such as Shin’s mapping hash coder [SHIN91] can calculate a hash address
within only a few machine cycles. Join attribute comparisons should be performed after all the
unnecessary tuples are eliminated.

Because the shin’s algorithm requires the fixed-size hash tables and a simple architecture,
an intelligent secondary storage device, which frequently accesses disks, may also use the Shin’s
join algorithm to filter unnecessary tuples effectively. Effective parallel processings, which
include parallel read capability in 1/0 (e.g., disk) devices, are recommended to accelerate the
join. The Shin’s algorithm can also be used in parallel accesses of secondary storage detect and
filter unnecessary tuples efficiently and pass only the necessary tuples to the DBMS.

The Shin’s join algorithm requires a maximum of five readings for each join attribute to
determine whether the associated tuple is necessary or not. Therefore, the time complexity of
the algorithm is represented as O(5*N) and can be simplified as O(N). The time complexity for
the traversal through buckets (O(T)) will be O(N) since the number of visits to buckets is
proportional to the number of inputs. Therefore, the time complexity is still O(N) since O(N)
+ O(T) = O(N) + O(N) = O(N).

Comparing the Shin’s join algorithm with others, one can see that none of the currently

~existing join algorithms effectively takes advantage of filtering schemes while the Shin’s
algorithm filters unwanted data efficiently. The Shin’s join algorithm requires only fixed-size
hash tables which are favorable for hardware implementation. Moreover, the performance of
the Shin’s join algorithm has much smaller dependency on the distribution performance of a
chosen hash function than that of the hash join algorithm. The simulation for the join was
performed by Shin [SHIN91]. The source, target, and correct resulting relatlons can be
presented as proof that the Shin’s algorithm logically works.

Before the Shin’s algorithm was discovered, people generally thought that among those
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which were several well-known hash join algorithms was an optimal solution for the join (i.e.,
equi-join). Schneider and DeWitt [SCHN89] stated that Hybrid hash-join algorithm is superior
except when the join attribute values of the inner relation are non-uniformly distributed and
memory is limited. Although the survey of join algorithms is not a simple task because many
factors and many uncertainties are involved, the Shin’s algorithm should be compared with the
hash join algorithms (e.g., the Hybrid) in a fair survey. A great deal of effort will go into this
survey not only to increase the speed of the time-consuming join operation but also to approve
a theory that provides an optimal solution for massive cross-referencing.

Section IV will describe how the Shin’s join algorithm is implemented in a back-end
database computer to detect and filter unnecessary data for the join.

IV. DATABASE COMPUTER HIMOD

The parallel computer architecture that facilitates a faster join and Shin’s join algorithm,
which performs best when using such architecture, are presented in this paper. The database
computer which is discussed in this paper is named HIMOD (Highly Modular Relational
Database Computer). It uses a back-end join coprocessor fabricated in a single chip [ABD76]
in its initial stage of development. The database back-end processor (DBCP) in HIMOD is
dedicated to the join database operation. Using the DBCP as a filter device, the HIMOD
maximizes the filtering effect in the join process.

This section will describe how Shin’s join algonthm can be performed by two major
processes such as filtering and merging, and it will show how these processes are executed in
parallel. Illustrating architecture of filter unit of the DBCP, it will explicitly explain how the
filter unit detects and eliminates unnecessary tuples efficiently.

A. An Overview of HIMOD Architecture

Shin’s join method [SHIN9!], used in HIMOD, is divided into two processes: filtering
and merging. Figure 4 depicts the interface between the host and the back-end, and illustrates
the parallel execution of the filtering process and the merging process. As shown in Figure 4,
the host requests a join operation of a source relation and a target relation. Then the back-end
will receive the request and perform the join of the source and target relations. Filtering
unnecessary tuples, the back-end transmits the pointers, which point to the tuple lists, to the host
processor whenever it finds the tuples that will be included in the resulting relation. The linked
source tuple(s) and target tuple(s) are retrieved from the main memory and merged by the host
processor. Therefore, parallelism is exploited in the join operation so that the filtering process
and the merging process are concurrently executed by the special purpose back-end and the
general purpose processor (host) respectively, as is indicated in Figure 4. The idea behind the
Shin’s join algorithm in the database computer HIMOD contends that the host processor handles
only tuples that are necessary for the resulting relation. The host processor is not burdened with
carrying too many join attributes and comparmg them for a match. The filtering scheme in
HIMOD is accomplished by the Shin’s join a]gonthm

HIMOD uses a Motorola 68000 family microprocessor as the host (or the front-end as
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one might consider) processor. The back-end processor communicates with the host processor
through a protocol, which is defined as the M68000 coprocessor interface [MOTO87a]. The
connection between the host processor unit (HPU) and the database coprocessor (DBCP)
develops from a simple extension of the M68000 bus interface. The DBCP is connected as a
coprocessor to the host processor, and a chip select signal, decoded from the host processor
function codes and address bus, selects the DBCP. The host processor and the coprocessor
configuration is shown in Figure 5. All communications between the HPU and the DBCP are
performed with standard M68000 family bus transfers. The DBCP contains a number of
coprocessor interface registers, which are addressed by the host processor in the same manner
as memory.

B. Architecture of the Host Processor

Since the simple M68000 coprocessor interface incorporates the design of the database
coprocessor, the M68000 family microprocessor is selected for the host processor of HIMOD.
The HIMOD may use a general purpose processor (e.g., a Motorola 68000 family
microprocessor) as a software back-end for the join. The software back-end dedicates itself to
performing only join operations. The Shin’s algorithm might be implemented on the software
back-end instead. In this case, there is no hardware change or enhancement on the database
coprocessor except for the interface unit. The software back-end approach might be
recommended for some of the operations in the database management systems.

C. Architecture of the Hardware Back-End

The new hardware back-end processor is intended primarily as a database
coprocessor(DBCP) to the M68000 family microprocessor unit (HPU). This database
coprocessor provides a high performance filter unit which is designed by Shin [SHINS1]. As
shown in Figure 6, the database coprocessor is internally divided into three processing elements:
the bus interface unit, the coprocessor control unit, and the filter unit. The bus interface unit
communicates with the host processor, and the coprocessor control unit sends control signals to
the filter unit in order to execute the intended database operation. For both the bus interface unit
and the processor control unit, the DBCP uses the conventions of the MC68881 and MC68882
floating-point coprocessor chips [MOTOS87b].

1) Bus Interface Unit

The bus interface unit contains the coprocessor interface registers (CIRs), the CIR
register select and timing control logic, and the status flags that are used to monitor the status
of communications with the host processor. The CIRs are addressed by the host processor in
the same manner as memory. All communications between the host processor unit and the
DBCP are performed with standard M68000 family bus transfers [MOTO87a]. The M68000
family coprocessor interface is implemented as a protocol of bus cycles during which the host
processor reads and writes to these CIRs. An MC68000 family host processor implements this
general purpose coprocessor interface protocol in both hardware and microcode. '



2) Coprocessor Control Unit

The control unit of the DBCP contains a clock generator, a two-level microcoded
sequencer, and a microcode ROM. The microsequencer either executes microinstructions or
awaits completion of accesses that are necessary to continue executing microcode. The
microsequencer sometimes controls the bus controller, which is responsible for all bus activities.
The microsequencer also controls instruction execution and internal processor operations, such
as setting condition codes and calculating effective addresses. The microsequencer provides the
microinstruction decode logic, the instruction decode register, the instruction decode PLA, and
it determines the "next microaddress" generation scheme for sequencing the microprograms.
The microcode ROM contains the microinstructions, which specify the steps through which the
machine sequences and which control the parallel operation of the functionally equivalent slices
of the filter unit.

3) Filter Unit ,

One of the main tasks of the DBCP is to release the host from tedious database
manipulation for the relational join by filtering tuples that do not have any potential for inclusion
in the resulting relation. To this end, the DBCP sends only the potential tuples to the host
processor. The filter unit of the DBCP is the heart of the coprocessor in determining
unnecessary data and discarding them. As shown in Figure 7, the filter unit of the DBCP
includes the join attribute extractor, transmittal and retrieval subunit, condition code, stack
pointer register, and five functionally different mapping hash coders with associated SAT (source
and target single-bit wide memory) and associated HAC (hash address comparator). The join
attribute extractor receives a join attribute(s) (or a tuple dependent on given data structure) and
transmits the join attribute value to the five attached hash coders. Compared to well-known hash
methods (e.g., the division method), the Shin’s mapping hash coder distributes keys effectively
and the mapping hash coder is much faster and cheaper. Thus the hardware implementation of
the mapping hash function [SHIN91] is used in the hash coder of HIMOD. The hash addresses
generated by functionally different mapping hash coders using a join attribute as an input key
are distinct, but the address calculation times required by functionally different mapping hash
coders are always the same and are only a few machine cycles. The property of functional
difference in the mapping hash coder is valuable in this application.

The SAT includes two single-bit wide memories (e.g., special registers or RAMs). One
memory (source memory) is for a group of source tuples, and another (target memory) is for
a group of target tuples. The single-bit wide memory has 256 bits. Each bit in a memory is
addressed by a hash address. [Each SAT is connected with a hash address register in an
associated HAC. The hash address register is equipped with an increment function so that the
address register will keep track of the next bucket address to be processed, and will feed it to
the connected SAT. Therefore, each SAT has a built-in multiplexer to select the right address
at any time as is shown in Figure 8. The controller sends signals to the control lines of the
multiplexer for the right selection of an address. The controller also sends memory write signals
to both source and target single-bit wide memories. Therefore, when the tuples in the source
relation are scanned, the single-bit wide source memory is marked based on the hash address
from the hash coder. ’

By the same system, when the tuples in the target relation are scanned, the single-bit
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wide target memory is marked instead. When the multiplexer in the SAT selects a hash address
from the corresponding HAC, the hash address is used to determine whether or not one of the
source and the target buckets is empty. This can be done by detecting hash-addressed bits if
both the source memory and target memory are '1’. The single-bit output from the source
memory and the single-bit output from the target memory are then logically ANDed. The
resulting single-bit output is sent to the corresponding HAC in order to determine whether or
not the tuples in the source and target buckets have to be processed. If one of the buckets is
empty, then tuples in those buckets will be eliminated as is described in the SOFT of the Shin’s
join algorithm.

The hardware structure that enhances this filtering technique also should be explained.
The architecture of the DBCP is characterized by a stack oriented structure of five pairs of SAT
and HAC. If there are any SATs lower than the current SAT (which is pointed by the stack
pointer), they are saved in the stack and deactivated during the filtering process while the current -
SAT participates in the filtering process. The contents of the current SAT are cleared first and
the bits in the SAT marked as the hash addresses are then produced. When a SAT is saved in
the stack, a file or a list of input tuples are divided and distributed into the addressed buckets
in the hash table according to the prior level hash coder in the stack. The divided list of source
tuples and the list of target tuples are passed through the filter again using the current and higher
HAG:s if their join condition attributes are not detected as identical. Thus the source and target
relations are divided repeatedly, discarding unwanted tuples, until the DBCP determines that the
partitioned lists of the source and target tuples have the same join attribute. Ultimately the
pointers to the partitioned lists of the source and target tuples are sent to the host processor, and
a series of source tuples and a series of target tuples are retrieved and merged to produce the
resulting tuples.

To efficiently determine whether or not the scanned source tuples and target tuples have
the same join attribute, a HAC is attached to each of the five hash coders. The HAC is
designed so that it sends a signal to the controller to stop dividing the tuples, as is explained
below. The HAC consists of a hash address register which keeps a record of the first hash
address produced by the corresponding hash coder and the number of exclusive-OR gates, the
OR gate, and the JK flip-flop. Each incoming hash address is compared with the first produced
hash address, as illustrated in Figure 9.

In order to load the first hash address, a controller sends a signal (’1°) to load the first
produced hash address into the hash address register. Once the first hash address is loaded, the
controller does not allow other hash addresses to be loaded into the hash address register. In
each HAC, the same number of exclusive-OR gates, as the number of bits in a hash address
register, are needed. The first bit of the address loaded in the hash address register and that of
an incoming hash address are inserted into the first exclusive-OR gate. If both are the same,
the output of the exclusive-OR gate is *0.’ If they are not the same; that is, if one input bit is
’1” and another is ’0,’ then the output is '1,” and it is passed to the OR gate. The OR gate
simultaneously receives all the resulting output signals from those exclusive-OR gates. If all of
the resulting bits are ’0,’ the output of the OR gate is ’0,’ indicating that both hash addresses
are identical. If at least one of the resulting bits from the exclusive-OR gates is ’1,’ then the
output of the OR gate becomes ’1,’ signifying that the loaded hash address in the hash address
register and the incoming hash address are different. Then the output (’1’) of the OR gate
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triggers the K input of the JK flip-flop (The output of the JK flip-flop is initially cleared to be
"1’ by the controller.), so the output of the JK flip-flop becomes *0.” Thus, the five structurally
identical HACs in the DBCP generate output signals at the same time.

The HAC has a second purpose. If the HAC is pushed into the stack, the hash address
in the HAC is used to keep track of the next bucket address to be processed. Just before the
HAC is pushed into the stack, the hash address register is cleared by the controller. The first
hash address is, therefore, ’0,’ and the bucket zero is examined for its emptiness. The inverted
signal from the connected SAT tells whether or not both the source and target buckets are
empty. If at least one of the buckets is empty, and if the controller allows it, the inverted signal
(C’I’) increments the hash address register. This incrementing process is repeated until a pair of
non-empty buckets is found. Before the source and target tuples in those buckets are further
processed, another pair of non-empty buckets is found and the bucket address is stored in the
hash address register. This bucket address is stored in the stack for later use. As a result, when
the HAC is stored in the stack, the associated hash address register is used to store the next non-
empty bucket address.

The hardware for hash address comparison, required to detect whether all the join
attributes in a file or list are identical, merits elucidation. The purpose of this hardware is to
inform the controller whether or not the input file or list should be divided further. If so, the
DBCP eventually sends the pointers to the source and target tuples having the same join
attribute to the host processor for concatenation. As shown in Figure 10, the five HACs are
stacked. Based on the value in the stack pointer register, the 5-to-1 multiplexer selects one from
the five inputs. When the stack pointer designates the first (i.e., the lowest) stack level, all the
outputs from the HACs are ANDed, and the resulting output of the AND gate (D) is selected
by the multiplexer. If the stack pointer specifies the second stack level, the first SAT is saved
in the stack and is not written until the controller sends a memory write signal to the SAT. The
output of the first HAC is, therefore, excluded from the inputs into the AND gate (C), and
outputs of the second, third, fourth, and fifth HACs are ANDed. Likewise, if the indicated
stack level is the third level, the first and second SATs are saved in the stack and the multiplexer
chooses the output of the AND gate (B), which receives the outputs from the third, fourth, and
fifth HACs as inputs. If the indicated stack level is the fifth (the highest) level, the four lower
level SATs are saved and the multiplexer selects the output directly from the fifth level HAC.
The stack configurations explain the stack in the SOFT as shown in Figure 2.

The single bit output from the multiplexer triggers the attached JK flip-flop if, after a
whole input file or list has been scanned, all the HACs, which are equal or higher than the
current stack level, indicate that only one kind of hash address has been produced from each
hash coder. The output value of the JK flip-flop is then sent to the controller. The controller,
based on the value from the JK flip-flop, then decides either to continue a division process or
to perform a conquer process. In the conquer process, the controller allows the transmittal and
retrieval subunit to send pointers to the lists of the necessary source and target tuples to the host
processor for a merge. Then the host processor retrieves the source and target tuples using the
pointers, and it merges the tuples to produce resulting tuples. The transmittal and retrieval
subunit figures out the pointers (addresses in main memory) to the lists of the source and target
tuples using the current stack level and a saved bucket address in a selected HAC as inputs.
Then the transmittal and retrieval subunit sends the obtained pointers to the wanted tuple lists
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to the host for a merge. Even though the output signal indicates that no further division process
is necessary, there is fewer than one chance in a trillion (1/(256**5)) that the signal will pass
an unwanted key. Although the final screening is not necessary due to the 99.9999999999 %
filtering effect, the final screening with direct comparisons by the host processor will eliminate
the spurious key, if it is present. Because this chance is extremely small, the host processor will
not waste time dealing with unnecessary data and the direct comparison of join attributes is not
needed.

In addition to the SOFT, the HIMOD database computer may employ the hashed address
bit array stores filtering technique in CAFS [BABB79]. The previous design of the HIMOD
[SHINO1] uses the filtering technique in CAFS. In order to employ the technique in the
HIMOD, a new scheme for the hash coders, so called dynamic hash coders, might be needed
due to differences in architectures. In this scheme, each dynamic hash coder generates a distinct
hash address based on the current stack level information. At this point, a database computer
designer may consider cost versus performance trade-offs. In this paper, the filtering technique
in CAFS is not included in the design of the filter unit because authors want to explain the
hardware implementation of the Shin’s join algorithm clearly.

The whole filter unit is designed to support the divide and conquer strategy in performing
the join relational database operation. Therefore, the filter unit should know when no further
division of input is necessary. A group of HACs determines whether or not the scanned tuples
have the same join attribute, and provides information to the controller concerning further
division processes or sending the desired tuples to the host processor.

The major operation in the filter unit is hashing for the dividing and filtering of tuples.
A maximum of five hash coders may participate in producing hash addresses in parallel. Both
the parallel architecture of the hardware back-end DBCP for the five hash coders and the parallel
architecture of each hash coder can drastically reduce the execution time of the join. Since the
software back-end cannot take advantage of the speed of parallel processing, one may think
about a hardware back-end DBCP before deciding.

V. CONCLUSIONS AND FUTURE RESEARCH
A. Summary

The major bottleneck in relational database management systems develops from the
frequently used and time-consuming join operation. Thus, it is apparent that accelerating the
join operation will improve the performance of relational database management systems. In this
paper, four join algorithms were mainly illustrated: the nested-loop algorithm, the sort-merge
algorithm, the hash algorithm, and the Shin’s algorithm. The nested-loop and sort-merge
algorithms were used in many database computers during the early stages of database machine
development. The hash-based join algorithms became prevalent due to the affordability of the
main memory.

Comparing the Shin’s join algorithm with others, one can see that none of the currently
existing join algorithms effectively takes advantage of any filtering scheme while the new join
algorithm filters unwanted data efficiently. Moreover, the Shin’s join algorithm has an
advantage in a parallel processing because parallelism is one of the important characteristics of
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the Shin’s join algorithm. In the Shin’s join algorithm, filtering and merging processes can be
executed in parallel, and the process of filtering tuples in partitioned linked lists can also be
divided into subprocesses that are to be executed in parallel.

This paper describes the Shin’s join algorithm and outlines an ideal approach for filtering
unnecessary tuples. It also discusses the highly modular relational database computer, HIMOD,
equipped with a single chip back-end processor for the join operation. The Shin’s join method
is divided into two major processes: filtering and merging. In the early stages of HIMOD
database computer development, the filtering process was performed by the back-end processor
(DBCP), and the merging process was executed by the host processor whenever it received
source and target lists of tuples from the DBCP. The parallel multiprocessing was not chosen
for this study due to its complex synchronization problems and lack of cost effectiveness.
However, in future research it will not be excluded from the study. HIMOD may have multiple
back-ends to accelerate the filtering process or may use general purpose processors as back-ends
to accelerate the merging process. In the course of this research, a single join back-end
processor with specialized hardware, which maximizes the filtering effect during the hashing
process, has been developed.

The join database coprocessor repeats the division and filtering process many times in
a recursive way; therefore, nearly one hundred percent of the unnecessary tuples are filtered.
After repetitive division and filtering processes, the remaining tuples in the source and
corresponding target list have an extremely high probability of having identical join attributes.
The remaining source and target tuples are sent to the host processor and merged. All other
tuples are eliminated before unnecessary comparison of their join attributes begins.  This
elimination of unnecessary tuples substantially reduces the number of join attribute comparisons.
As a result, total data movements in performing a join are radically diminished.

The distinguishable difference between Shin’s join algorithm and other hash-based join
algorithms is that, in the Shin’s join algorithm, the filtering process is combined with the hashing
process. Accordingly, unnecessary data are detected and filtered while other join algorithms
may carry unwanted tuples up to the last moment of join attribute comparisons.

B. Conclusions

This research has led to a new database computer using the Shin’s join algorithm. The
algorithm will shorten the time needed for a join, since it frequently filters unnecessary data.
On the contrary, the hash join algorithm is not recommended because it requires flexible size
for a hash table. Such flexibility of a hash table is not only the cause of sudden and
unpredictable main memory consumption but also an obstacle to hardware implementations.
Because the Shin’s join algorithm requires only fixed size for a hash table, it does not have the
problems that hash join algorithms have.

The database computer HIMOD can further accelerate the join because it employs the
parallel execution of the filtering process and the merging process to accomplish the Shin’s join
method. To maximize the speed of the filtering process, the filter unit in the join database
coprocessor is organized as a stack. The proposed architecture of the stack oriented filter
technique can be employed for a database processor or an intelligent I/0 device.
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C. Future Research

For future research, a database computer with multiple back-ends using the Shin’s join
algorithm would be a fruitful topic since the algorithm has an inherent characteristic of parallel
processing. This research topic will be more strongly emphasized due to the huge demand for
real time DBMS (or Main Memory DBMS) with high speed networking (e.g., ATM and fiber
optic networks). As shown in step 1 and step 2 of Figure 2, a single back-end processor can
detect and eliminate unnecessary tuples in only one pair of linked lists at a time. If two or more
identical back-ends are provided, those linked lists are processed in parallel. Thus, if the
parallel processing is developed, then the speed of the join may be increased in proportion to
the number of the back-ends used. One may design a software back-end or a hardware back-
end for the merging process that the host processor in HIMOD performs. The number of back-
ends for the merging process can be multiple for some DBMS applications.

The multiple back-ends database computer would outperform the multiprocessor database
computer that uses well known join methods, such as the parallel nested-loop join, the parallel
sort-merge join, and the parallel hash join methods. None of the well known methods exploits
the filtering mechanism in their parallel join algorithms and none of these methods have an
inherent characteristic of parallel processing while the Shin’s parallel join algorithm has both
advantages. It will be useful to discuss how the Shin’s join algorithm will be applied to an
intelligent 1/0 device which accesses disks in parallel and eliminates unnecessary tuples
efficiently. A comparative study of these parallel join methods, including Shin’s join algorithm,
based on the measured response time, may provide a good direction for the increasing of the
speed of the join. '

ACKNOWLEDGMENTS

We thank Domenico Ferrari, Michael Stonebraker, Arie Segev, Kun-Hee Lee, Steven
Schwarz, David Messerschmitt, Diogenes Angelakos, Lotfi Zadeh, Ward Maurer, Michael
Feldman, and Helen Shin for their feedbacks and supports. We are thankful to E. Babb, Stanley
Su, and David DeWitt for their previous works. Finally, Shin would like to thank Manuel
Blum, David Patterson, and Simon Berkovich for their teachings which made him successful in
discovering an algorithm for the join.

BIBLIOGRAPHY

[ABD76] Abd-alla, A. M. and Meltzer, A. C. Principles of Digital Compurer Design. Vol.
I, Englewood Cliffs: Prentice Hall, 1976.

[AUERS81]  Auer, H., et al. "RDBM-A Relational Database Machine." Information Systems,
Vol. 6, No. 2, 1981: 91-100.

[BABB79] Babb, E. "Implementing a Relational Database by Means of Specialized
Hardware." ACM Transactions on Database Systems, Vol. 4, No. 1, Mar. 1979:

15



[BABBS2]

[BANCS80]

[BITT83]

[BLAS77]

[BORASgI]

[CODD70]

[DATES1]

[DATES7]

[DEWISS]

[DEWISS]

[GOODSI]

[HORO78]

[HSIA83]

1-29.

Babb, E. "Joined Normal Form: A Storage Encoding for Relational Databases. "
ACM Transactions on Database Systems, Vol. 4, No. 1. Dec. 1982: 588-614.

Bancilhon, F. and Scholl, M. "Design of a Backend Processor for a Data Base
Machine." Proceedings of ACM’s SIGMOD 1980 International Conference on
Management of Data, May 1980: 93-93g.

Bitton, D., et al. "Parallel Algorithms for the Execution of Relational Database
Operations." ACM Transactions on Database Systems, Vol. 8, No. 3, Sep. 1983:
324-53.

Blasgen, M. W. and Eswaran, K. P. "Storage and Access in Relational Data
Bases." IBM System Journal, Vol. 16, No. 4, 1977: 363-77.

Boral, H. and DeWitt, D. "Processor Allocation Strategies for Multiprocessor
Database Machines." ACM Transactions on Database Systems, Vol. 6, No. 2,
Jun. 1981: 227-54.

Codd, E. F. "A Relational Model of Data for Large Shared Data Banks." CACM,
Vol. 13, No. 6, Jun. 1970: 377-87.

Date, C. J. An Introduction to Database Systems. Reading: Addison-Wesley,
1981.

Date, C. J. A Guide to Ingres. Reading: Addison-Wesley, 1987.
DeWitt, D. J. and Gerber, R. "Multiprocessor Hash-Based Join Algorithms."
Proceedings of the Eleventh International Conference on Very Large Data Bases,

Stockholm, 1985: 151-64.

DeWitt D. J., etal. "A Performancé Analysis of the Gamma Database Machine."
Proceedings of the 1988 SIGMOD Conference, Jun. 1988: 350-60.

Goodman, J. R. and Sequin, C. H. "Hypertree: A Multiprocessor Interconnection
Topology." IEEE Transactions on Computers, Vol. C-30, No. 12, 1981: 923-33.

Horowitz, E. and Sahni, S. Fundamentals of Computer Algorithms. Rockville:
Computer Science Press, Inc. 1978.

Hsiao, D. K. Advanced Database Machine Architecture. Englewood Cliffs:
Prentice Hall, 1983. '

16



[MARYZ&0]

[MOTO87a]

[MOTO87b]

[PANG93]

[PATT90]

[PATTY94]

[QADARS]

[RICH87]

[RITC74]

[SCHN89]

[SHAPS6]

[SHINO1]

[SHIN94]

[SHULS4]

Maryanski, F. J. "Backend Database Systems." ACM’s Computing Surveys, Vol.
12, No. 1, Mar. 1980: 3-25. '

Motorola, Inc. MC68030 Enhanced 32-bit Microprocessor User’s Manual.
Motorola, Inc., 1987.

Motorola, Inc. MC68881/MC68882 Floating-Point Coprocessor User’s Manual.
Englewood Cliffs: Prentice Hall, 1987.

Pang, H., Carey, M. J., and Miron, L. “Partially Preemptible Hash Joins."
Proceedings of the ACM SIGMOD, May 1993: 59-68.

Patterson, D. A. and Hennessy, J. L. Computer Architecture: A Quantitative
Approach. San Francisco: Morgan Kaufmann, 1990.

Patterson, D. A. and Hennessy, J. L. Computer Organization & Design: the
hardware/software interface. San Francisco: Morgan Kaufmann, 1994.

Qadah, G. Z. and Irani, K. B. "The Join Algorithms on a Shared-Memory
Multiprocessor Database Machine." IEEE Transactions on Software Engineering,
Vol. 14, No. 11, Nov. 1988: 1668-83.

Richardson, J. P., et al. "Design and Evaluation of Parallel Pipelined Join
Algorithms." ACM SIGMOD, Vol. 16, No. 3, Dec. 1987: 399-409.

Ritchie, D. M. and Thompson, K. “The UNIX Time-Sharing System." CACM,
Vol. 17, No. 7, Jul. 1974: 365-75.

Schneider, D. A. and DeWitt, D. J. "A Performance Evaluation of Four Parallel
Join Algorithms in a Shared-Nothing Multiprocessor Environment." Proceedings
of the 1989 ACM SIGMOD, Vol. 18, No. 2, Jun. 1989: 110-21.

Shapiro, L. D. "Join Processing in Database Systems with Large Main
Memories." ACM Transactions on Database Systems, Vol. 11, No. 3, Sep. 1986:
239-64.

Shin, D. K. A Comparative Study of Hash Functions for a New Hash-Based
Relational Join Algorithm. Pub. #91-23423, Ann Arbor: UMI Dissertation
Information Service, 1991.

Shin, D. K. and Meltzer, A. C. "A New Join Algorithm." ACM SIGMOD
RECORD, Vol. 23, No. 4, Dec. 1994: 13-8.

Shultz, R. K. "Response Time Analysis of Multiprocessor Computers for

17



[SMIT79]

[STON76]

[STONg1]

[SU8S]

[ULLMS2]

[VALDS2]

[VALDS84]

Database Support." ACM Transactions on Database Systems, Vol. 9, No. 1, Mar.
1984: 100-132.

Smith, D. C. and Smith, J. M. "Relational Database Machines." IEEE Computer,
Vol. 12, No. 3, Mar. 1979: 18-38.

Stonebraker, M. R., et al. "The Design and Implementation of INGRES." ACM
Transactions on Database Systems, Vol. 1, No. 3, Sep. 1976: 189-222.

Stonebraker, M. R. "Operating System Support for Database Management."
CACM, Vol. 24, No.7, Jul. 1981: 412-18.

Su, S. Y. W. Database Computers Principles, Architectures, and Techniques.
New York: McGraw-Hill, 1988.

Ullman, J. D. Principles of Database Systems. Rockville: Computer Science
Press, 1982.

Valduriez, P. "Semi-Join Algorithms for Multiprocessor Systems." Proceedings
of ACM’s SIGMOD 1982 International Conference on Management of Data, Jul.
1982: 225-33.

Valduriez, P. and Gardarin, G. "Join and Semijoin Algorithms for a

Multiprocessor Database Machine." ACM Transactions on Database Systems,
Vol. 9, No. 1, Mar. 1984: 133-61.

18



Relation S E Relation T

A B C D E F

d e f a d c

b d g d g a

h d b ‘ :

SELECT S.* T.* " JOIN S, T (S.B =T.E)

FROM S, T "~ Relation R

WHERE S.B = T.E A B C D E_F
b d g a d c
‘h d b a d c

Figure 1. An Example of the Join Relational Operation
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begin
Initialization;
finish := false;
repeat
Hash_Source_And_Target_Relations;
If Only_One_Hash_Address_Produced then
begin
Merge Tuples_And Output;
If No_More_Next_Bucket_Addr then
begin
If Bottom_Of_Stack then finish := true
else begin

pop;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_Stack then finish : = true
else begin

mo_More_Next_Bucket_Addr then
begin

if Bottom_Of_Stack then finish := true
else begin

pop;
if No_More_Next_Bucket_Addr then
begin
if Bottom_Of_Stack then finish : = true
else begin

ztpglo_Morc_Nexl_Bucket_Addr then
egin
if Bottom_Of_Stack then finish := true
else begin
Assign_Source_And_Target:
Save_Next_Bucket_Addr;
push;
end;
end;
end;
end;
else begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;
push;
end;
end;
end
else begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;
push;
end;
end;
end
else begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;
push;
end;
end;
end
else begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;
push;
end;
end
clse begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr;
push;
end
until finish;
end.

Figure 3. The Shin’s Join Algorithm
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