SIGMOD
RECORD

A Quarterly Publication of the Association
for Computing Machinery Special Interest
Group on Management of Data

Volume 23 Number 4 December 1994
SIGMOD COMMITTEES AND INSTITUTIONAL SPONSORS 1
EDITOR'S NOTES AND ERRATUM i 2
CONTENTS ARTICLES:
Are the Terms "Version™ and "Variant™ Orthogonal to One Another? 3
Hartmut Wedekind
DataModelingintheLarge00ttt 8
Martin Bertram
ANew Join Algorithm 13

Dong Keun Shin and Arnold Charles Meltzer
SPECIAL ISSUE: METADATA FOR DIGITAL MEDIA

Introduction to the Special Issue 19
Wolfgang Klas and Amit Sheth (Editors)

Metadata for Multimedia Documents 21
Klemens Bohms and Thomas C. Rakow

Metadata in Video Databases 27

Ramesh Jain and Arun Hampapur
A Meta-database System for Semantic Image Search by a Mathematical

Model of Meaningt ittt et e 34
Yasushi Kiyoki, Takashi Kitagawa, and Takanan Hayama

SEQUOIA 2000 Metadata Schema for Satellite Images 42
Jean T. Anderson and Michael Stonebraker

Using Metadata for the Intelligent Browsing of Structured Media Objects . 49

Wilham |. Grosky, Farshad Fotouhi, Ishwar K. Sethi,
and Bogdan Capatina

Metadata for Integrating Speech Documents in a Text Retrieval System 57
Ulrike Glavitsch, Peter Schauble, Martin Wechsler
Meta-data for Mixed-media access 64

Francine Chen, Marti Hearst, Julian Kupiec, Jan Pedersen, Lynn Wilcox
DATABASE RESEARCH SURVEYS:
Loading Databases Using Dataflow Parallelism 72
Tom Barclay, Robert Barnes, Jim Gray, Prakash Sundaresan
DATABASE STANDARDS ACTIVITIES:
Recent Design Trade-offs in SQL3 o o .84
Nelson Mattos and Linda G. DeMichied
TRADE PRESS NEWS::
Announcement and Preface
Rafacl Alonsu
UNIX RDBMS: The next generation
Bili Roscnblatt
DATABASE RESEARCH FUNDING
Xiaoler Quan
ANNOUNCEMENTS and CALLS FOR PAPERS

A New Join Algorithm

Dong Keun Shin and Amold Charles Meltzer

Samsung Electronics Co., Ltd.
Communication Systems R&D Center
SongPa P.O.Box 117, Seoul, Korea
email: dkshin@trvax$.sait.samsung.co.kr

Department of Electrical Engineering and Computer Science
The School of Engineering and Applied Science
The George Washington University
email: meltzer@seas.gwu.edu

Abstract

This paper introduces a new efficient
join algorithm to increase the speed of the join
relational operation. Using a divide and conquer
strategy, stack oriented filter technique in the
new join algorithm filters unwanted tuples as
early as possible while none of the currently
existing join algorithms takes advantage of any
filtering concept. Other join algorithms may
carry the unnecessary tuples up to the last
moment of join attribute comparisons.

Four join algorithms are described and
discussed in this paper: the nested-loop join
algorithm, the sort-merge join algorithm, the
hash join algorithm, and the new join algorithm.

1 INTRODUCTION

Since The problem of complexity of the
time-consuming join operation is the major
bottleneck for relational database management
systems, many researchers have endeavored to
increase the speed of the join. However, this
issue remains less than fully explored.

After analyzing the nested-loop and the
sort-merge join algorithms, Blasgen and Eswaran
[4] concluded that the sort-merge join algorithm
would be the choice when no suitable index
existed and a nested-loop join algorithm

performed acceptably when a suitable index
existed. Both nested-loop and sort-merge join
algorithms will be described and discussed later
in Sections 2 and 4 respectively.

Since the cost of the main memory has
been substantially reduced, it is now a well-
known fact that the join algorithm based on
hashing is more advantageous than nested-loop
or sort-merge join methods: a fact that has been
noted by DeWitt and Gerber [8].

In Section 2, the previous known three
major join methods are briefly summarized. As
a new solution for the join, Stack oriented filter
technique used in Shin’s join algorithm will be
presented and explained in Section 3, while time
complexities are discussed in Section 4. Finally,
in Section 5, conclusions are given.

2 THE CURRENTLY EXISTING
MAJOR JOIN ALGORITHMS

In this section, a brief overview of the
major algorithms published until now for the
join operation is given. The approaches for the
join are described in three separate subsections.

2.1 The Nested-Loop Join Method

The nested-loop join method is the
simplest among the three major algorithms. The
two relations involved in the join operation are
called the outer relation (or source relation) S

SIGMOD RECORD, Vol. 23, No. 4, December 1994 13

and the inner relation (or target relation) T,
respectively. Each tuple of the outer relation S
is compared with tuples of the inner relation T
over one or more join attributes. If the join
condition is satisfied, a tuple of S s
concatenated with a tuple of T to produce a tuple
for the resulting relation R.

2.2 The Sort-Merge Join Method

Each of the source (S) and target (T)
relation is retrieved, and their tuples are sorted
over one or more join attributes in subsequent
phases using one of many sorting algorithms
(e.g., n-way merge). After the completion of
the sorting operation, the two sorted streams of
tuples are merged together. During the merge
operation, if a tuple of the source relation S and
a tuple of T satisfy the join condition, they are
concatenated to form a tuple of the resulting
relation R.

2.3 The Hash Join Method

In the straightforward hash join
algorithm, the source and target relations, which
one may call S and T, respectively, are read.
The join attribute values of the source relation
are first hashed by a hash function. The hashed
values are used to address entries of a hash table
called buckets. If the same hash function used
for the join attribute value of the target relation
is hashed to a non-empty bucket of the hash
table, and one of the join attribute values stored
in that bucket matches with the value, the equi-
join condition is satisfied. The corresponding
tuples of the source and target relations are
concatenated to form a tuple of the resulting
relation. The process continues until all the
tuples of the target relation have been processed.

3 SHIN’S ALGORITHM FOR THE JOIN

In Shin’s join algorithm, the source and
target relations are repeatedly divided (or
rehashed) by a maximum of five statistically
independent hash functions until a group of
source tuples and target tuples are found to have
an identical join attribute. Many statistically
independent hash functions can be derived from

Shin’s mapping hash function [14] by choosing
a unique set of prime numbers for each mapping
hash function. The source and target tuples in
the group are merged after the final screening in
order to produce resulting tuples.

The stack oriented filter technique
(SOFT) is the main idea used in the new join
algorithm. The fundamental data structure used
in the SOFT is a stack. Each stack item in the
SOFT represents a pair of hash tables: one hash
table for source tuples and the other hash table
for target tuples. In the process of the new join
algorithm, a maximum of five pairs of hash
tables in the stack may be created. A source
hash table in a stack item includes 256 (Any
suitable number can be used instead of 256.)
bucket pointers for the linked lists of source
tuples, and a target hash table in a stack item
also includes 256 bucket pointers for the linked
lists of target tuples. The number of bucket
pointers to the power of the number of pairs of
hash tables (e.g., 256**5 in this example) should
be sufficiently large. If both input relations are
too large to fit into the main memory, they are
divided into a maximum of 256 subset files for
each relation by the first hash coder, as is shown
in step 1 in Figure 1. After the source and
target tuples are hashed by the first hash coder,
the tuples in the source subset file (Si) can
possibly match with only the tuples in the target
subset file (Ti). If an empty subset file exists,
all tuples in the pair of the subset files would be
eliminated since they have no potential to be
included in the resulting relation.

As is shown in step 2 in Figure 1, the
join attribute values of the source tuples are
hashed by the second hash function; as a result,
the source tuples are stored in addressed buckets
in the source hash table. Using the same hash
function, the target tuples are hashed and stored
in the target hash table. While the tuples are
being divided into a maximum of 256 groups,
the first produced hash address is compared with
(or subtracted from) subsequently produced hash
addresses to detect if the produced hash
addresses are the same. If so, the source tuples
and target tuples are merged with final
screening. After the hashing process, three
kinds of pairs of buckets (ij) might be created.

14 SIGMOD RECORD, Vol. 23, No. 4, December 1994

(Step 1)

Data
— Cache —

- OOHE00- -0y

{Step 3)

Sij liltr{}ﬂv.vﬂ;
Tij lilt,{}-{]r.rﬂ;

0<-j<-n

11k0
11k

O OHHTEER-0-0- 04

444
11k

(Step 5)

t35 13! Hst/[}-{_)r.{]j_
Tijk) nn,{}{],.ﬂ;

0<=1<=n

The soutce and target

tuples are merged, ——

Buffer —
(Step 2)
>
Data ———
Cache w
Q<ef<can
{n~255)
T
I
l -
£0 - D-0HBRL0-0: 05
NiSE
(Step €)

§ijx llIt,—{}{)r.*]-l
Tijx “"’G{]”'D“#

O<uk<can

£0-- 00k l{}{):.-.g}

111111

(Step 6)

{;{] L{~sijkim 2iet
4—01 vDO\'”)llm list

O<emncan

Figure 1. The SOFT in Shin’s Join Algorithm

The pairs appear in the following combinations:
(1) The source and target buckets (Sij and
Tij) are not empty.
(2) The source bucket (Sij) is not empty, but
the target bucket (Tij) is empty.
(3) The target bucket (Tij) is not empty, but
the source bucket (Sij) is empty.

It is the main concept in the SOFT that
when one of the two buckets is empty, the tuples
in the corresponding bucket are unnecessary and
they are filtered out.

The algorithm proceeds from the palr of
buckets of address 0 to the pair of buckets of

address 255 checking if both source and target
buckets are not empty. When both buckets are
not empty, the next bucket address is saved and
the tuples in the source bucket and the
corresponding target bucket will be rehashed (or
divided) by the next statistically independent
hash function.

During the rehashing process, the
algorithm compares the first produced hash
address with the others. If all the produced hash
addresses are identical (the termination condition
for a division process), the tuples are merged
with final screening; otherwise, the tuples are
divided further by another functionally different

SIGMOD RECORD, Vol. 23, No. 4, December 1994 15

hash coder.

Steps 3, 4, and 5 in Figure 1 can be
explained similarly. In step 6, no available hash
function is left and unnecessary data have been
filtered; therefore, the source and target tuples
are merged without being rehashed. As far as
data structure is concerned, the linked list data
structure is better than the array data structure
for the buckets in steps 2 through S because in
these steps most of the buckets may be empty.
Therefore, by using the linked lists for the
buckets, memory space can be conserved.

As the new join algorithm is shown in
Figure 2, push and pop are the names of the
procedures operating in the stack of the SOFT:
push inserts a pair of source and target hash
tables onto the top of the stack, and pop deletes
a pair of source and target hash tables from the
top. In the SOFT, the stack pointer always
points to the current pair of hash tables—-the item
at the top of the stack—-by incrementing its value
when pop is called. By referring to the value in
the stack pointer, the function Bottom_Of_Stack
can tell whether the stack pointer points to the
first or lowest pair of hash tables as the current
item of the stack.

In the new join algorithm, there are
several other frequently used procedures such as
Assign_Source_And_Target,
No_More_Next_Bucket_Addr, and
Save_Next_Bucket_Addr “The module
Assign_Source_And_Target uses the header
pointers of both source and target linked lists
based on the saved next bucket address of the
current pair of hash tables in order that the
tuples in the linked lists are processed through
the filter again. Each next bucket address is
incremented and saved to keep track of the
subsequent bucket address. Whenever the
procedure Assign_Source_And_Target is called,
another next bucket address, which has non-
empty buckets for both source and target hash
tables, is found and saved by the procedure
termed Save Next_Bucket_Addr. As a result,
the procedure push saves the contents of the
current pair of hash tables and increments the
stack pointer in order that the next upper pair of
hash tables becomes the current one or the top
of the stack.

When pop is called, the stack pointer is

finish : = false;
repest
Hash_Source And_Target_Relations;
1f Only_Onc_Hash_ Addrul Produced then

bei{erge Tuples_And Output;
If No_Morc_Next_Bucket_Addr then

begin
If Bottom_Of_Stack then

ﬁnnh = true
bqn
l’°§° More_Next_Bucket_Addr then
beffBocom_Of_Shck&al
finish : = true
cloe
be‘in

if No More_Next_Bucket_Addr then
beff Bocom_Of_Slmk thea
= true
eke
begin

iof Eo More_Next_Bucket_Addr then

beffBonom Of_Stack then
finish : = true
else
begin

mo More_Next_Bucket_Addr thea
nfBomom Of_Stack then
finish : = true
e\le

Alll‘ll Source_ And_Target;
Save_Next_Bucket Addr;

push;
end;
end;
end;
end;
clae
begin
Assign_Source_And_Target;
Save_| Next Bucket_Addr;
push;
end;
eod;
end
clae

begin
Assign_Source_And_Target;
m\r;:‘nﬂext Bt&etld:!:"

end;

eod;

end

clsc

begin
Assign_Source_And_Target;
Save_Next_Bucket_Addr:
push’

Assign T et,
Save | Ne Bua
pushi’

eod;
end
be;ln

Assign_Source_And Target,
Save_ Next Bucket_Addr;

push;
end
until finish;
end.

Figure 2. The Shin’s Join Algorithm

16 SIGMOD RECORD, Vol. 23, No. 4, December 1994

decremented in order that the pair of hash tables
directly under the current one becomes the
current pair of hash tables. After the pop, the
boolean function No_More Next Bucket_Addr
should be called in order to see if there is any
saved next bucket address for the current pair of
hash tables. If there is none, the current pair of
hash tables is checked to see if it is the first or
lowest one. If so, the join process is terminated
by breaking the repeat loop.

The algorithm shown in Figure 2 is an
explanatory version of the main module of a
simulation program. One may consider the flow
of the new join algorithm as preorder tree (in
this example, a 256-ary tree of depth five)
traversal.

4 DISCUSSION

When the number of tuples in the source
relation (the smaller relation) is S, the number of
tuples in the target relation (the larger relation)
is T, and the number of tuples in the resulting
relation is R, then the time complexity of the
nested-loop join algorithm is O(S*T).
Considering the upper bound (N) of S and T, we
can simplify O(S*T) as O(N*N). the time
complexity of the sort-merge algorithm is
O((S+T) log (S+T)). Since S+T is the total
number of the input tuples (N), the time
complexity can be represented as O(N log N).
The time complexity of hash-based join
algorithms is O(S+T+R). Assuming that R is
relatively smaller than S +T, the time complexity
becomes O(S+T), which is O(N). It is hard to
rely solely on asymptotic time complexity
analysis to understand the actual performance
due to the number of accesses to the secondary
storage and other I/0 and communication factors
which are not heavily considered in this paper.
However, the time complexity analysis will be
more reliable in the future when sufficient main
memory, effective I/O and communication
channels, and necessary hardware will be
provided.

Shin’s join algorithm requires a
maximum of five hashings for each join attribute
to determine whether the associated tuple is
necessary or not. Therefore, when the input
(S+T) is greater than the output (R) as usual,

the time complexity of the algorithm is
represented as O(5*(S+T)), which is O(5*N).
Then it can be simplified as O(N). Comparing
the new join algorithm with others, one can see
that none of the currently existing join
algorithms effectively takes advantage of any
filtering scheme while the new join algorithm
filters unwanted data efficiently.

Usually, the performance of hash join
method is largely dependent on the ratio of the
selected hash table size to the number of input
tuples. It is an overhead to calculate a hash
table size based on the number of input tuples
prior to each hash join operation. The hash table
size is fixed in the new join algorithm, so one
does not need to calculate a suitable hash table
size for each join operation.

S CONCLUSIONS

Three major join algorithms and a new
join algorithm are illustrated and discussed in
this paper: the nested-loop algorithm, the sort-
merge algorithm, the hash algorithm, and the
Shin’s algorithm. The Shin’s join algorithm
repeats the division and filtering process many
times in a recursive way; therefore, nearly 100
percent of unnecessary tuples are filtered.

No requirement for hash table size
calculation can be considered as an important
characteristic of the new join algorithm since
other hash join algorithms may compute hash
table size based on input size for each join
operation. The new join algorithm uses not
variable size hash tables but fixed size hash
tables, so the algorithm requires no
preprocessing for hash table size calculation.

This research has produced a new join
algorithm to improve the performance of
relational database management systems. This
new join algorithm will accelerate the join
operation, since the new join algorithm goes
through frequent filtering processes to discard
unwanted tuples efficiently. The more main
memory space that is available, the more
powerful the new join algorithm will be.

Acknowledgement
We would like to thank Arie Segev, Michael
Stonebraker, Domenico Ferrari, Manuel Blum,

SIGMOD RECORD, Vol. 23, No. 4, December 1994 17

Ward Maurer,

Michael Feldman, Simon

Berkovich, Michael Carey, Won Kim, David
DeWitt, H. Jagadish, and Arun Swami for a
review of this article and their helpful
suggestions.

References

(1

2]

(3]

(4]

(5]

(6]

7

(8]

191

18

Abd-alla, A. M., and Meltzer, A. C.
Principles of Digital Computer
Design. Vol. I, Englewood Cliffs:
Prentice Hall, 1976.

Babb, E. "Implementing a Relational
Database by Means of Specialized
Hardware." ACM_ Transactions on

Database Systms, Vol. 4, No. 1,
Mar. 1979: 1-29.

Bitton, D., et al. "Parallel
Algorithms for the Execution of
Relational Database Operations."
ACM Transactions on Database
Systems, Vol. 8, No. 3, Sep. 1983:
324- 53.

Blasgen, M. W., and Eswaran, K. P.
"Storage and Access in Relational
Data Bases." IBM_System Journal,
Vol. 16, No. 4, 1977: 363-77.

Boral, H., and DeWitt, D. J. "Processor
Allocation Strategies for
Multiprocessor Database Machines."
ACM Transactions on Database
Systems, Vol. 6, No. 2, Jun. 1981:
227-54.

Codd, E. F. "A Relational Model of
Data for Large Shared Data Banks."
CACM, Vol. 13, No. 6, Jun. 1970:
377-87.

DeWitt, D. J. "DIRECT-A
Multiprocessor Organization for
Supporting Relational Database
Management System." IEEE
Transactions on Computers, Vol. C-
28, Jun. 1979: 395-406.

DeWwitt, D. J., and Gerber, R.
"Multiprocessor Hash-Based Join
Algorithms.” Proceedings of the

1 nternation nfer n
Very Large Data Bases, Stockhoim,
1985: 151-64.

Goodman, J. R., and Sequin, C. H.

[10]

(11}

[12]

[13]

[14]

[15]

[16]

[17]

(18]

"Hypertree: A Multiprocessor
Interconnection Topology.”" IEEE
Transactions on Computers, Vol. C-
30, No. 12, 1981: 923-33.

Hsiao, D. K. Advanced Database

Machine Architecture. Englewood
Cliffs: Prentice Hall, 1983.

Pang, H., Carey, M. J., and Miron,
L. “"Partially Preemptible Hash
Joins." Proceedings of the 1993 ACM
SIGMOD, May 1993: 59-68.
Schneider, D. A., and DeWitt, D. J.
"A Performance Evaluation of Four
Parallel Join Algorithms in a
Shared-Nothing Multiprocessor
Environment." Proceedings of the
1989 ACM SIGMOD, Vol. 18, No.
2, Jun. 1989: 110-21.

Shapiro, L. D. "Join Processing in
Database Systems with Large Main
Memories." ACM Transactions on
Database Systems, Vol. 11, No. 3,
Sep. 1986: 239-64.

Shin, D. K. A _Comparative Study of
Hash Functions for a New Hash-

Based Relational Join Algorithm.
Pub #91-23423, Ann Arbor: UMI

Dissertation Information Service,
1991.
Stonebraker, M. R., et al. "The

Design and Implementation of
INGRES." ACM__Transactions on

Database Systems, Vol. 1, No. 3,
Sep. 1976: 189-222.
Su, S. Y. W. Database Computers

Principles, Architectures, and
Techniques. New York: McGraw-

Hill, 1988.

Valduriez, P., and Gardarin, G.
"Join and Semijoin Algorithms for a
Multiprocessor Database Machine."
ACM Transaction n_ D e
Systems, Vol. 9, No. 1, Mar.

1984: 133-61.

Hsiao, H., Chen M., and Yu P. "On
Parallel Execution of Multiple Pipelined
Hash Joins." Proceedings of the 1994

ACM SIGMOD, Vol 23, No 2, Jun.
1994: 185-196

SIGMOD RECORD, Vol. 23, No. 4, December 1994

