26

(1) Several Primitive Operations on Shin’s Tree

1. Search a key in the Shin tree.
2. Print inserted keys in the Shin tree in sorted order.
3. Insert a key into the tree.
4. Traverse the Shin tree in 4 different ways:

a. preorder

b. suorder

c. inorder

d. postorder
. Convert Shin tree to its corresponding reverse one and vice versa.
. Delete a key from the tree.

L S4

N W

(2) Pseudo-code for Shin_Sort The Key routine

{The Routine that calls Shin Sort recursive routine. It creates Shin’s tree initially;
two pointer parameters: one for Shin tree and one for input key. It calls shin sort
recursive routine to insert key into created Shin tree.}

Read_and Store Input String_and Get_the Pointer {input nodes linked through
left son pointers; if they are integer number, sufficient

zero characters are filled in for each integer number
beforehand.}

If Root_Pointer = nil then Root_Pointer <== Input_Pointer

If Root_Pointer’s Character > Input_Pointer’s Character then
Input_Pointer’s Right_Child <== Root_Pointer
Root_Pointer <==Input_Pointer to the first character in key string

If (Root_Pointer’s Character < Input_Pointer’s Character) or
(Root_Pointer’s Character = Input_Pointer’s Character) then ﬂg t
Tree_Pointer <== Root_Pointer
Call Shin_Sort recursive routine y

&,

_,Q// se. o ror- »
it

LIM
LK TNES
) ZoN
KIND
TADE



[

(3) Pseudo-code for Shin_Sort recursive routine : et g j A

{This recursive Shin_Sort module will insert input key into right position in - A DT
created Shin tree by comparing pointed input character with pointed tree node’s U e
character. Based on the comparison: equal, less, and greater, it performs
appropriate action. }

Recursive Shin_Sort Routine (Root_Pointer, Input_Pointer);

If Tree_Pointer = nil then Header Pointer’ left or right son gets Current Input

_—Node’s:peinter based on preset value of left/right flag (Header Left Right Flag) fz\f
Else if Pointed_Input Character = Pointed Tree Character then NV LK A f

. Header Pointer <==Tree Pointer ~
Header Left Right Flag <== left

Tree_Pointer <==Tree Pointer’s left son

If (Tree_Pointer = nil) or no_more_input_characters_left then

¥ 3 Header-Pointed node’s counter gets incremented by one

~ [[If Tree_Pointer = nil then ‘
Input_Pointer goes to next character in the input key

Header_Pointer’s left child <== Input_Pointer

Input_Pointer goes to next character in the input key
Call itself, the Shin_Sort recursive routine to move in the tree

l,l»se if Input_Character < Pointed_Tree Character then insertion of the input node by:
Based on Header Left Right Flag
If left then Header ~ Pointer’s left son gets Input_Pointer
If right then Header Pointer’s right son gets Input_Pointer
Input_Pointer’s Right Child gets Tree Pointer to complete the insertion of the node to tree

Else if Input_Character > Pointed_Tree Character then
Header Pointer <==Tree Pointer
Set Header Left Right Flag to right
Tree_Pointer <==Tree_ Pointer’s right child
Call itself, the Shin_Sort recursive routine to move to the right place in the tree




