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. Abstract

Shin’s mapping hash method and several Shin’s FS hash methods are designed to take
advantage of parallel processing in calculating each bit value of a hash address. The new
mapping hash method not only has reliable and relatively good key distribution, but it also takes
only a few clock cycles to calculate a hash address if the mapping hash coder is implemented
in hardware.

The study surveys several newly developed hash functions along with well-known hash
functions such as division, digit analysis, folding, midsquare, multiplicative, radix, random, and
Pearson’s table indexing. The comparative analysis of the hash coders in a chaining scheme was
based on criteria such as distribution, speed, and cost. As a result of this study, a group of
relatively good and data-independent (RGDI) hash functions are recognized. No noticeable
difference has been found in distribution performances of hash functions in the RGDI group.
Among the RGDI hash functions, the Shin’s mapping hash method is not only fast and
inexpensive when it is implemented in hardware, but it is also easier and better to use than the
well accepted division hash method. Therefore, this paper concludes that the Shin’s (additive)
mapping hash method is a reasonable choice for an effective hash coder in both software and
hardware implementation cases.

1. Introduction

These days, distributive sorting by a hash function is popularly used in many applications
[MAUR2, BABBI]; therefore, there has been a huge demand for an effective hash coder. In
some applications, an effective hash coder is essential to increase the speed of hash-based
operations. Another motive for finding a good hash function and the survey of hash functions
is that performance of some application is heavily dependent on distribution performance of a
chosen hash function. Searching for a good hash function, one may question about the major
criterion for judging a hash function. Therefore, the requirements for a good hash coder need
to be clarified first.



The main objectives of a hash function are summarized by Knuth [KNUT1]. Knuth’s
requirements for a good hash function include the following:

1) computation should be very fast

2) collisions should be minimized.

The first requirement is important in some database application [BABB1, SHIN2] since the
number of keys the hash coder has to transform into hash addresses may be large. The hash
address calculation per each key often is a main cause of time consumption. Knuth’s second
requirement for minimizing collisions implies that a good hash function should provide a good
distribution performance. Since no hash function can distribute an equal amount of keys in each
bucket, it becomes necessary to compare the distribution performance of any new hash function
with currently accepted hash functions such as the division method [ULLM1, DATEI1].

According to this survey of hash functions, distribution performance of some hash
functions might show a data dependency problem. In other words, when keys are similar, a data
dependent hash function has a larger chance of a collision occurring. Therefore, data
independence is a requirement for a good hash function.

When a hash coder is implemented in software, requirements for a hash coder are the
same as those for a good hash function, as discussed above. On the other hand, when a hash
coder is implemented in hardware, in addition to the requirements for a good hash function, the
requirement of low cost should be satisfied for an acceptable hash coder.

The biggest advantage of a hardware (oriented) hash coder might be speed performance.
This advantage is largely dependent on the kind of hash function chosen. Some hash functions
can be accelerated by means of hardware aids; however, others gain relatively little speed even
though they cost much more. It is important to determine which hash function fits well into a
hardware implementation in terms of both speed and cost, while providing a relatively good,
data-independent distribution performance.

The requirements suggested for an effective hash coder implemented in hardware can be
summarized as follows:

1. Fast hash address calculation (i.e., a few clock cycles)

2. Relatively good and data-independent distribution performance

3. Low cost in implementation

In this paper, several proposed new hashing functions such as Maurer’s shift-fold-loading,
Berkovich’s Hu-Tucker code, Shin’s mapping and additive mapping, and Shin’s various versions
of FS (fold-shifting) are introduced and compared with currently existing hash functions in terms
of distribution, speed, and cost. In Section 2, experimental environment for this survey of hash
functions is explained. In Section 3, the currently existing hash functions and the new hash
functions are described. Distribution performances, speeds, and costs of hash functions are
discussed in Section 4. Finally, summary and conclusions are given in Section 5.

2. Experimental Environment

The form of hashing considered in this survey is chaining (or open hashing) which
provides a potentially unlimited space for each bucket in a hash table. In this hashing scheme,
each bucket in the hash table may contain a pointer to a linked list.

In this experiment for a survey of hash functions, three kinds of data sets are used to



compare the performance of hash functions. Keys in these three data sets consist of a maximum
of 16 ASCII characters; they are left justified and are space character filled. The first data set
(RCN) contains 1,024 persons’ names, randomly chosen from the phone book, depending on the
row, column, and page number, generated by a pseudo-random number generating function.
The second data set (GCN) includes 1,024 generally or arbitrarily chosen persons’ names with
16 characters. In this data set, there are dozens of groups of people having the same last name.
The third data set (RNS) has 1,024 numbers with 16 numeric characters, which are generated
by the same function.

Each character in the data sets is internally represented by its corresponding ASCII code.
It is assumed that 16 characters in the ASCII code are initially stored in a four-word, or 16-byte,
key register. If the ASCII code character string is considered as a number, it may be too large
for some hash functions to calculate. Therefore, in this survey, an encoding scheme is used for
hash functions such as division, digit analysis, folding, midsquare, multiplicative, radix, random,
and Shin’s FS. On the other hand, hash functions such as Shin’s mapping, Maurer’s shift-fold-
loading, Berkovich’s Hu-Tucker code, and Pearson’s table indexing do not use encoding
schemes. There are many encoding schemes that one can use with a hash function. If a key
is encoded into one word, most of the existing hashing function can be directly applied. As
Maurer suggests [MAURL1], if keys are longer than one computer word, each word in a key can
be folded to the next one consecutively, taking the exclusive-OR. Because this encoding scheme
is fast and easily implemented in both hardware and software, it merits attention.

Since this paper also focuses on a fast hardware oriented hash function, calculated hash
addresses should be represented with the values of the address bits--8 address bits in this case.
The number of buckets in the hash table is 256, 2 to the power of 8. The choice of 256 for the
number of buckets in a hash table provides fairness for both hardware- and software-oriented
hash functions as indicated by a comparative analysis of their performances.

As the barometer of distribution performance, mean square deviation is selected. Each
hash method is executed on the three data sets to produce mean square deviations, the better the
distribution and the fewer incidences of collision. Since the number of buckets in the hash table
is 256, and since 1024 keys are hashed, a uniform distribution would contain four tuples--the
mean in each bucket. The formula of the mean square deviation is:

"z'f (Ni-M) 2

i=o X

Ni : the number of tuples inserted into bucket!

X : the number of buckets (e.g., 256 (28))

Two speed performances should be determined: one for a software implementation and
the other for a hardware implementation. First, when a hash function if implemented in
software, execution time in clock cycles can be calculated by hand. The actual instruction-cache
case execution time for an instruction sequence of a hash algorithm is derived using the
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X 256

M : mean value (e.g., 4)

instruction-cache case times listed in the tables of the MC68030 User’s Manual [MOTO1].
Second, it should be noted that when a hash function is implemented in hardware, the execution
time in the clock cycle is calculated for each hash function based on Motorola’s HCMOS
technology.

The cost of a hardware implemented hash coder is approximately calculated by counting
the number of gates used in the coder. Each flip-flop used in either a register or elsewhere is
counted for two gates. The gates used for the key register which is provided to all hash methods
are not included in the number of gates used in the hash coder. If any other device or local
memory is used, it is specified in addition to the number of gates by using a postfix mark.

Some hash functions use time-consuming multiplication and division operations. Thus,
there is a need for a fast multiplier and divider. A fast modular array multiplier by means of
nonadditive multiply modules (NMMs) and bit slice adders, known as Wallace trees, can save
time in multiplication compared with an ordinary sequential add-shift multiplier consisting of
registers, a shift register, and an adder. A carry lookahead adding divider also substantially
increases the speed of a division operation in comparison to the speed of a sequential shift-
subtract/add restoring/nonrestoring divider. Hardware organizations of the above multipliers and
dividers are explicitly explained in the referenced articles and book [WALL1, CAPP1, STEFI,
CAVAl]L

According to this survey of hash functions, key-to-address transformation methods are
evaluated without weighing other factors such as overflow storage or handling schemes, loading
factor, and bucket size owing to the environment of a chaining scheme.

3. Description of Current and New Hash Functions

3.1 The Division Hash Method

The division hash algorithm simply adds, or exclusive-ORs, the ordinal number of words
in a key and takes the remainder, and divides the sum (the combination or the encoded key,
Key) by bucket size number b. The resulting remainder (h(Key)) could represent any bucket
number O through b-1. Buchholz and Maurer suggest that the divisor should be the largest
prime number smaller than b [BUCHI1, MAUR2].

3.2 The Digit Analysis Hash Method

The digit analysis hash method [MAUR1, LUMI1] differs from all others in that it deals
only with a static file where all the keys in an input file are known beforehand. Therefore,
using either mean square deviation or standard deviation, the skewed distribution of each digit
or bit position can be analyzed. The digits that have the most skewed distributions (larger
deviations) are deleted to make the number of remaining digits, small enough to produce an
address in the range of the hash table. This statistical analysis does not guarantee uniform
distribution: however, it does provide a better chance of producing uniform spread.



3.3 The Folding Hash Method

In the folding hash method [MAURI1, LUMI], the key is partitioned into several parts;
e.g., 3 partitions in the key are folded inward like folding paper. Subsequently, the bits or
digits falling into the same position are exclusive-ORed (or added). The k bits in the resulting
partition are then used to represent a hash address for the hash table that has two to the power
of k (2**Kk) buckets. This folding method is specifically called fold-boundary or folding at the
boundaries.

In another folding method, all but the first partitions are shifted so that the least
significant bit of each partition lines up with the corresponding bit of the first partition, then
these partitions are folded. This method is often referred to as fold-shifting or shift-folding.
New versions of fold-shifting (FS) are developed and discussed in this paper.

3.4 The Midsquare Hash Method

In the midsquare hash method [MAUR1, LUM2], the key is multiplied by itself or by
some constant, then an appropriate number of bits are extracted from the middle of the square
to produce a hash address. If k bits are extracted, then the range of hash values is from zero
to 2**k - 1. The number of buckets in the hash table must also be two to the power of k, when
this type of bit extraction scheme is used. The idea here is to use the middle bits of the square,
which might be affected by all of the characters, or the whole bytes in the key in producing a
hash address.

3.5 The Multiplicative Hash Method

A real number C between 0 and 1 is chosen in the multiplicative hash method [MAUR2,
KNOT1]. The hash function is defined as truncate (m * fraction(c * Key)), where fraction(x)
is the fractional part of the real number x (i.e., fraction(x) = x - truncate(x)). In other words,
the key is multiplied by a real number (c) between 0 and 1. The fractional part of the product
is used to provide a random number between 0 and 1 dependent on every bit of the key, and is
multiplied by m to give an index between 0 and m-1. If the word size of the computer is 32
(2**35) bits, c should be selected so that 2**(2**5)*c is an integer relatively prime to 2**(2**5);
¢ should not be too close to either 0 or 1. Also if r is the number of possible character codes,
one should avoid values ¢ such that fraction ((r**p)*c) is too close to 0 or 1 for some small
value of p and values ¢ of the form i / (r - 1) or i / (r**2 - 1). Values of ¢ that yield good
theoretical properties are 0.6180339887, which equals (sqrt(5) - 1) / 2, or 0.3819660113, which
equals 1 - (sqrt(5) - 1) / 2.

3.6 The Radix Hash Method

In the radix hash method [MAUR1, LUM2], a number representing the key is considered
as a number in a selected base, e.g., base 11 rather than its real base. In the radix hash method,
the resulting number is converted to base 10 for a decimal address. For example, the key 7,286
in base 10 is considered as 7,286 in base 11; therefore, 7,286 in base 11 becomes 9,653 in base
10, as is shown in the equation below:



7%11% + 2%11%2 + 8%11! + 6 = 9653 (base 10)

Furthermore, the resulting number 9,653 can be divided by the number of buckets in the
table. The remainder is then used as a hash address just like in the division method. This
combination of two methods, the radix transformation and division methods, is derived from
Lin’s work [LUMI].

3.7 The Random Hash Method

This random hash method [MAURI1] requires a statistically approved pseudo-random
number generating function. After the key is encoded, the encoded word is sent to the random
number generating function as the seed. Then the random hash method applies division, or some
other method, to the generated random number to produce a hash address. The distribution
performance of this hash function is thus dependent on the chosen pseudo-random number
generating function.

3.8 The Pearson’s Table Indexing Hash Method

Recently, Pearson introduced a new hash method [PEARI1] for personal computers which
lacks hardware multiplication and division functions. The major operations used in this hash
method are exclusive-OR and indexed memory read and write. As shown in Figure 1, an
auxiliary table(T) is used to contain 256 integers ranging from 0 to 255. Pearson’s hash function
receives a string of characters in ASCII code. Each character (C(i)) is represented by one byte
that is used as an index in the range 0-255.

As shown in Figure 2, each character of a key is exclusive-ORed with an indexed
memory read (H(i-1)) in table H. The resulting byte is used to index the table T, and the
indexed value in T is then stored to H(i) for the next iteration step. After the looping process
is finished, the last indexed value (H(n)) from the table T becomes the hash address for the
buckets ranging 0 through 255.

3.9 Maurer’s Shift-fold-loading Hash Method

Maurer’s shift-fold-loading hash method is a hardware-oriented system. The three
primary operations in this hash method are shift (or rotate) right, exclusive-OR, and load into
a register. All three are relatively fast operations. A key register contains bit information of a
whole key. It is the same size register as the key register for fast shift operations, and a number
of exclusive-OR gates (one gate for each bit in the key) are required in the hash coder.

Initially an input key exists in both shift and key registers. The shift register will rotate
the bit contents one bit to the right; therefore, the rightmost bit will be stored in the leftmost bit
in the shift register. Then every pair of bits that are in the same position as the key and the shift
registers are exclusive-ORed together. Finally, the resulting bits are loaded into both the shift
and the key registers. The algorithm is shown in Figure 3.

As specified in the algorithm in the second rotation, all the bits in the shift register are
rotated three bits right, and exclusive-ORing and loading follows by the same method as
described above. Then the algorithm rotates seven bits right, while performing the same
exclusive-ORing and loading once again. It then rotates another 15 bits right and repeats the



process. After that, the same process for 31, 63, and 127 bits is duplicated in order. If there are
N bits in a key, log N numbers of shift, exclusive-OR and load operations are required, since

Ki =21 -1<N(i21). Thus, 1 < i < log (N+1).

3.10 Berkovich’s Hu-Tucker Code Hash Method

In Berkovich’s Hu-Tucker code hash method, the Hu-Tucker variable length code
[KNUT1], as shown in Figure 4, is used. Converting each character in a key to its
corresponding Hu-Tucker code and storing the binary string of the code for each character, the
Hu-Tucker code string for the whole key is accumulatively created, character by character. For
example, the Hu-Tucker coded value of the key ABC’ is '0010001100001101." In the
conversion process, the string size of a code for each character must be added to provide the
total number of bits in the final string of the code. This resulting string of bits is partitioned into
substrings which are the same length as a hash address. The last substring might be shorter, but
it is filled with zeros. These substrings are folded one by one by taking exclusive-OR. The bits
in the resulting string represent a hash address.

The idea behind this hash method may be described as the variable length and irregular
pattern of the Hu-Tucker code, for each character helps randomize the bit values of a hash
address when the fixed length substrings are folded.

3.11 Shin’s Mapping Hash Method

The algorithm of Shin’s mapping hash method in a Pascal-like notation is shown in
Figure 5. The programming language of Pascal provides an ORD function which converts a
character to a corresponding ASCII integer number. In the algorithm, only the six least
significant bits of the ASCII numbers are used as indices to the table containing 64 (2**6) prime
numbers.

If the exclusive-OR (EX-OR) function is explained in high level terms, it receives two
integer numbers to be exclusive-ORed, which then converts them to two strings of 1°'s and 0’s,
and takes the exclusive-OR on the bits of the same position in the two strings. Then the
mapping hash function converts the resulting binary string back to integer output to be sent to
the calling program. In the hardware implementation of this mapping hash method, the
exclusive-OR operation is more valuable than the addition operation since the exclusive-OR
operation does not generate a carry-out bit. Should anyone implement this hash function in a
high level language while disregarding speed, Shin’s additive mapping hash function which
employs the addition operation can be used instead.

With the last statement, the time-consuming MOD operation that provides a remainder
after a division, is not necessary if the least significant k bits from the combination or the sum
can be extracted in order to produce a hash address for the table of 2**k buckets. This
alternative method is acceptable, since the value (the combination or the sum) in the vanable
Temp is already adequately randomized.

The mapping hash function is actually a hardware-oriented hash method that converts or
maps in parallel the internal representation, e.g., ASCII code, of each character in a key to an
arbitrarily chosen prime number (or a randomly chosen number), and then folds these numbers



using arrays of exclusive-OR gates to produce a number in binary form and, once again, in a
parallel manner. Then the function extracts k bits from the binary number in order to produce
a hash address for the hash table of two to the power of k buckets. The mapping hash coder
requires hardware components, for example, sixteen 64*16 bits ROMs (one ROM for each
character) and eight exclusive-OR or EX-OR modules (120 exclusive-OR gates in total) as shown
in Figures 6 and 7. In each ROM, 64 (2**6) the arbitrarily selected prime numbers are stored.
(Each ROM may contain 128, 32, or 16 numbers if a user chooses 128*16, 32*16, or 16*16
ROM respectively.) All the selected numbers should be greater than the number of buckets in
a hash table. A set of all 16 ROMs is included in the hardware mapping hash coder. The
contents of all 16 ROMs are different. In this hash coder, only the least significant six bits of
an ASCII character are used as an input address to the corresponding ROM.

As shown in Figure 6, the first bits of the 16 prime numbers are exclusive-ORed
together to generate the first bit of a hash address. Simultaneously, the second bits of the 16
prime numbers are exclusive-ORed together producing the second bit of the resulting hash
address. All other bits of a hash address also are constructed at the same time. The circuit of
EX-OR Module for each bit shown in Figure 6 is represented in Figure 7. The concurrent
processing in looking up random numbers and in bit calculations for a hash address increases
the speed of hash address computation. The major operations in this hash method are indexed
memory read and exclusive-OR. These operations also are time-saving operations. The
conversion of an ASCII character to a prime number is a useful aid in randomizing the value
of bits. It is, however, necessary to be cautious about designating the least significant bit of
every prime number ’1°, since prime numbers are odd numbers. Consequently, the least
significant bit of every prime number should be excluded in forming a hash address. One may
add one to every prime numbers in even number slots in each ROM to avoid the problem.

The following statement in the algorithm, "Temp := EX_OR (Prime_Table (Index),
Temp);" performs exactly the same function that the hardware implemented mapping hash
method does. If ’+’ is understood to represent exclusive-OR operation on two input bits, and
X1 is the first bit of the first prime number, then X2 is the first bit of the second prime number,
and so on. As a result, Xi is the first bit of the i-th prime number. The assertion can be
expressed with the following equation:

((X14X2)+ (X34 X4) + ((X5+ X6)+ (XT+X8))) +
((X9+X10)+ (X114 X12)) + ((X13+ X14) + (X 15+ X16)))

= (XTI +X2)+X3)+ X4) + XS) + X6) + XT) + X8) +
X9)+X10)+X11)+X12)+X13)+ X14)+X15)+X16

The left-hand side of the equation represents how the parallel exclusive-ORs on the first bits are
taken from the 16 prime numbers. The right-hand side of the equation represents how the serial
exclusive-ORs on the first bits are taken from the 16 prime numbers. By using the associative
law of exclusive-OR, such that (X+Y)+Z = X+(Y+Z) = X+ Y+Z, one can easily prove both
sides of the above equation are equal. Thus, it is obvious that the parallel and serial processing
of the mapping hash method are equivalent. Considering limited bandwidth in transferring keys,
character by character serial processing for hashing a key is also feasible using an iterative



hardware component. By the law of the exclusive-OR, the parallel processing and the serial
processing of the hardware mapping hash method provide the same hash address calculation.

3.12 Shin’s Additive Mapping Hash Method

The algorithm of Shin’s additive mapping hash method employs the addition operation
instead of the exclusive-OR operation that the Shin’s mapping hash method employs. When one
implement the Shin’s additive mapping hash function in a high level language, the following
statement can be used: "Temp := Prime_Table (Char_No, Index) + Temp;" in place of the
statement: "Temp : = EX_OR (Prime_Table (Char_No, Index), Temp);" in the algorithm shown
in Figure 5. After the for-loop in the algorithm, the sum in the variable Temp is an adequately
randomized (hashed-up) value. The sum will be divided by the number of buckets, and the
remainder will be used as a hash address. This hash method gives as good a distribution
performance as the mapping hash method, as shown in this survey.

3.13 Shin’s FS (Fold-Shifting) Hash Method

As has been shown by several researchers [MAURI, KNUT1, KNOT1, LUMI1], the
fold-shifting hash method is the fastest and most easily implemented method in hardware. In
hardware implementation of the fold-shifting hash method, the original encoded keyword can be
shifted, not by a shift register, but by wires which are shifted in their connection to exclusive-
OR gates.

When there is an encoded one word key (or partition), there may be many ways to fold
using the exclusive-OR operation. The questions about the fold-shifting method can be described
as follows:

1) How many partitions have to be made on a key?

(Or how many folding processes are needed?)

2) How many bits should be shifted or rotated for each partition?

In answering the above questions, it is necessary to consider how many shifted keywords
are needed in folding in order to randomize the bits in the resulting word. Each byte in an
encoded keyword may have a similar pattern. However, the pattern in each byte should be
eliminated in the folding process. Hence, the scope of randomization is narrowed down to a
byte. If the number of bits rotated is one, then eight rotated keywords might be sufficient to
randomize every bit in a byte, since eight, the number of keywords, times one, the number of
bits rotated, is the number of bits in a byte. This fold-shifting process may be represented by
R(0,1,2,3,4,5,6,7).

If the number of bits rotated is two, then the four rotated keywords may be enough to
randomize every bit in a byte, since the number of bits to be rotated, two, times the number of
rotated keywords, four, is the number of the bits in a byte. For example, R(0,2,4,6) is
equivalent to any combination of 0,2,4, and 6, e.g., R(2,4,6,0), R(4,6,0,2), etc. R(0,2,4,6) also
is symmetric to R(1,3,5,7), because their resulting bits are only ordered differently. It becomes
evident that the number of rotated keywords required is the upper boundary of the number that
results from the number of bits in a byte, eight, divided by (/) the number of bits rotated. For
hardware implementation, it would be preferable if the number of rotated keywords is 2**r
(r=1, 2, or 3), due to the fact that each exclusive-OR gate has two inputs.

When the number of bits rotated is three, R(0,3,6,1) would be considered. If the number



of bits rotated is four, R(0,4,1,5) can be used instead of R(0,4,0,4) or R(0,4). If five bits are
rotated, R(0,5,2,7) can be used. When six bits are rotated, R(0,6,4,2) would be considered,;
however, it is symmetrical to R(0,2,4,6); therefore, R(0,6,4,2) would not be selected. If seven
bits are rotated, R(0,7,6,5) can be used.

These fold-shifting hash methods may require that the number of rotated keywords should
be four (2**r, r=2) because two is too little and eight is too many. Interestingly, there are four
bytes in an encoded keyword, and the number of rotated keywords are four. Therefore, it can
be deduced that at least some portion of each byte should affect the other three bytes in the
keyword. Accordingly, eight bits should be rotated right in the second keyword, 16 bits should
be rotated right in the third keyword, and 24 bits should be rotated right for the fourth keyword.
Thus, R(0,2,4,6) becomes FS(0,2+8, 4+8*2, 6+8*3) or FS(0,10,20,30). By the same process,
R(0,3,6,1) becomes FS(0,11,22,25), R(0,4,1,5) becomes FS(0,10,17,29), R(0,5,2,7) becomes
FS(0,13,18,31), and R(0,7,6,5) becomes FS(0,15,22,29). Therefore, the selected FS hash
methods to be examined are FS(0,10,20,30), FS(0,11,22,25), FS(0,10,17,29), FS(0,13,18,31),
and FS(0,10,17,29). The distribution performances of the FS hash methods are discussed in this
survey.

4. An Analysis of Distribution, Speed, and Cost

Table 1 shows each hash function’s performance in terms of distribution, in terms of
speed when implemented either in software (SW) or in hardware (HW), and in terms of the cost
of the hardware implementation of the hash function. For measurement of distribution, mean
square deviation (MSD) is provided whenever a hash function is applied to the three different
data sets: randomly chosen names (RCN), generally chosen names (GCN), and randomly
chosen numeric strings (RNS). The number of clock cycles (clocks) is used in the measurement
of the speeds of the hash coders. The cost of building a hardware hash coder is roughly
represented according to the number of gates needed.

Distribution performances of the mapping hash method have been developed in cases
when each ROM contains prime numbers and when each ROM contains random numbers. As
shown in the Tables 2A and 2B, mean square deviations hover around four, as do those of other
relatively good hash methods. Since there is no distinguishable difference between using prime
numbers and random numbers for each ROM, there is no clear reason to insist on solely prime
numbers. The results do not provide any clue regarding data dependency since the mapping
hash function distributes numeric string keys as well as other keys. Different groups of eight
bits, e.g., 1-8, 2-9, 3-10, 4-11, 5-12, 6-13 bits, are extracted to compose a hash address (The
1-8 means bits 1 through 8 are selected.). In summary, there is no noticeable difference
between the distribution performances of the various groups.

By virtue of byte-by-byte parallel processing, with separate ROM and exclusive-OR module,
the mapping hash method can produce a hash address within three clock cycles (The calculation
time is measured after a key string is loaded into the key register.). The mapping hash method
requires as many clock cycles as other hash methods require to load a key string into the key
register. Two clock cycles of the MC68030 processor are required in order for the memory read
to retrieve a random number from the corresponding ROM, as is specified in the Motorola’s
users manual [MOTOI1]. One clock cycle is needed for the calculation process for hash address
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bits through the four levels of exclusive-OR gates. The maximum gate delay is nine
nanoseconds and the clock frequency is set to 20 MHz (50 nanoseconds per a clock pulse width);
thus, the address bit signal can pass through the four gate levels (4*9 = 36 < 50 nsec) within
a clock cycle.

Based on the stored contents (selected prime numbers) of the ROMs, each mapping hash
coder calculates a hash address in its unique way. The hash addresses generated by different
mapping hash coders are independent of each other, but the address calculation time for each
hash coder is always the same. It is this characteristic of statistical independence that constitutes
the asset of the mapping hash function. This property also is valuable in an application
environment which uses rehashing scheme. It is noteworthy that the additive mapping hash
method shows competitive distribution performances (MSDs of 4.40, 3.39, 3.58) when it is
tested. This result supports the claim that addition and exclusive-ORing produce the same effect
in randomizing the bit values.

The distribution performances of Shin’s FS hash method, in particular, FS(0,10,20,30)
and FS(0,11,22,25) are as good as those of other acceptable hash methods. But other selected
FS methods, such as FS(0,12,17,29), FS(0,13,18,31), and FS(0,15,22,29), show a data
dependency problem, such that the distribution performance on the RNS data set is not
compatible with the distribution performance on the RCN and GCN data sets, as is demonstrated
in Table 3. Therefore, when using this hash method careful selection of the number of partitions
and the number of rotated bits is required. The performance of a hardware hash coder is
dependent on randomness of each bit value in produced hash addresses. For example, if a single
bit is stuck at either 0’ or ’1’ for all the produced hash addresses, half of the buckets in a hash
table will be empty. Therefore, for a good hardware hash coder, the value in each bit position
of produced hash addresses should not be stuck at either '0’ or ’1°.

The distribution performance of the division hash method [BUCH1, MAURI1, LUMI1]
varies depending on the chosen divisor which is close to the number of buckets, as is shown in
Table 4. If an inappropriate divisor is chosen, a data dependency problem may occur. In this
experiment, the divisors which are greater than the number of buckets in a hash table (i.e., 256)
also are tested. Therefore, if a produced value for a hash address is greater than the number of
buckets, the value is folded inward at the boundary of the hash table to find a matched hash
address which is within the range of the hash table. As recommended by Lum and his
colleagues, the divisor 257 is a nonprime number with prime factors less than 20, but it shows
very poor distributions (MSDs of 5.67, 11.95, and 122.99). As Maurer and Buchholz suggested
[MAUR2, BUCHI1], using the largest prime number, (i.e., 241) that also is smaller than the
number of buckets, as the divisor, yields better results (MSDs of 5.51, 5.35, 4.48).

We disapprove of the division hash method [AHO1] which sums the integers (ASCII
values) for each character and divides the result by the number of buckets(B), taking the
remainder, which is an integer from 0 from B-1. In this case, the addressing range of the
division hash method is very limited. Accordingly, this division hash method results in
performing a poor distribution when the number of buckets in a hash table is larger than the
range. Hash functions with the table-size dependency problem are not recommended.

Several other researchers [BUCH1, LUM1, RAMAI1] conducted experiments on typical
key sets in order to discover the ideal hash method. Their overall conclusions verify that the
simple method of division seems to be the best key to address transformation technique when
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computational time is not critical. Nevertheless, in this survey of hash methods, the division
method is not highly recommended since either the mapping or the additive mapping method can
be used instead, depending on the application environment. In the application, where fast hash
address calculation is not required, the additive mapping method is superior to the division
method. When using the additive mapping method, one need not worry about selecting a correct
divisor; one need only divide the sum or combination by the number of buckets in order to
arrive at a remainder for a hash address. On the other hand, when the speed in address
calculation is imperative and the number of buckets can be 2**k, a hardware hash coder is
needed. In this case, the mapping hash coder which is faster and cheaper than the division hash
coder is thus recommended.

Pearson’s table indexing hash method appears to be erratic owing to its poor distribution
performance. The fold-boundary and the midsquare show data dependency problems as shown
in Tables 5 and 6 respectively. In particular, the multiplicative, the radix, and the random hash
functions show signs that they may perform poorly for specific data sets. The distribution
performance of the digit analysis hash method is measured by using two types of encoded keys:
2 bytes and 4 bytes as shown in Table 1. The findings indicate that this hash method may be
data dependent. Both Maurer (see Table 7 for more information) and Berkovich present new
hash methods that have proved to be proficient in distribution performance. Their methods,
however, have not been highly recommended for the effective hash coder due to their relatively
slow hash address calculation speeds.

The hash functions such as midsquare, multiplicative, radix, and random use complex
mathematical operations, e.g., multiplication and division. Their speeds of hash address
calculation can be increased by fast multipliers and/or dividers. These fast multipliers and
dividers, however, are quite expensive. Since there are speed versus cost trade-offs, any
judgement regarding adaption must be made thoughtfully. For that reason, the gates of these
options also are reflected in the costs of a hash coder in order to help a computer designer make
the best decision.

As result of the survey, a group of relatively good and data-independent hash functions
is recognized, the mapping, the additive mapping, the shift-fold-loading, the Hu-Tucker code,
FS(0,10,20,30) and FS(0,11,22,25), and the division are called RGDI (pronounce it like rugdy)
hash functions. It is assumed that a RGDI hash function which uses the encoding scheme cannot
be a perfect data-independent hash function. For example, the division method is not perfectly
data-independent because it uses the encoding scheme. If a data set includes only the keys which
are composed of two kinds of characters such as *0’ and ’1’ (e.g.,"0100101001", “1110100110",
etc.) after a encoding process, all bit values in an encoded word will be fixed (i.e., stuck)except
four least significant bits for four bytes in the encoded word. The performance of the division
hash method must be very poor in this case. Therefore, the hash function which uses an
encoding scheme is not recommended when a data set includes keys which are represented with
a very limited number of characters (i.e., less than 10 characters).

5. Summary and Conclusions

§.1 Summary
If huge amounts of data pass through a hash coder, the hash address calculation should
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be very fast. In order to speed up the hash address computation, efforts should be concentrated
on designing a new hash function that will avoid time-consuming serial and/or iterative
computations while taking advantage of parallel processing, by means of hardware, for
converting a key into a hash address. Moreover, the new hash algorithm should distribute
random keys into buckets as uniformly as possible. The ideal hash function design for this
application is thus data-independent and calculates a hash address within a few machine cycles
with relatively good distribution.

Most of the well known hash functions, and several new ones, including mapping,
additive mapping, shift-fold-loading, Hu-Tucker code, and various versions of FS, are surveyed
in this paper. Each hash function has been simulated and applied to two different name data sets
(RCN and GCN) and one numeric string data set (RNS) to produce distribution performances
measured in terms of mean square deviations. The speed of calculating a hash address is
measured in terms of clock cycles for each hash function in both the hardware and software
implementation cases. The cost of the hardware implemented hash coder may be calculated and
stated in terms of the number of gates used.

As the results illustrated in the above tables indicate, some of the well-known hash
functions, such as the midsquare and the fold-boundary, show data dependency problems. Other
hash functions, like the multiplicative, the radix, and the random, show signs that they may
perform poorly for specific data sets. New shift-fold-loading and Hu-Tucker code hash methods
have good distribution performances, but they are not fast in hash address calculation. Not
every new FS hash methods are reliable in terms of distribution performance; nonetheless, these
methods are extremely fast in that it requires only a single clock cycle after the key is encoded
and loaded into the key register. Moreover, the FS hash coder is inexpensive. This survey also
shows that there is no distinguishable difference between distribution performances of relatively
good, data-independent hash functions, such as the mapping, the additive mapping, the shift-fold-
loading, the Hu-Tucker code, FS(0,10,20,30) and FS(0,11,22,25), and the division methods. In
this survey of hash methods, the difference in the distribution performances of the relatively
good hash functions is hardly perceptible. By comparing distribution performance of a hash
function with the performance of other acceptable hash functions, one can easily discern whether
the distribution performance of a hash function is in a group of the relatively good hash
functions or not. This study group the hash functions together according to distribution
performance. As a result of the survey of hash functions, a group of the relatively good and
data-independent hash functions is identified, called RGDI (pronounced like rugdy) hash
functions. More new hash functions will be included in the RGDI group based on simulation
results. :

As a RGDI hash function, the newly-developed mapping hash method involves the
combination of the mapping or converting of each character in a key to a corresponding prime-
number or random-number technique and the folding technique. This proposed parallel
processing of the mapping hash coder transforms each character into a number and calculates
each bit value in a hash address by means of hardware in order to produce a hash address within
three clock cycles. Other hash methods cannot take advantage of such effective parallel
processing in producing each bit in a hash address due to the algorithmic nature of their hash
address calculation. The mapping hash coder in hardware is relatively inexpensive compared
to other hardware hash coders which use complex mathematical operations like multiplication
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and division. Compared to other well-known methods, this mapping hash method distributes
keys effectively. Moreover, it does not have a data dependency problem in its distribution of
similar keys because the mapping hash method is sensitive to every character in a key producing
a hash address.

5.2 Conclusions

In this survey of hash functions, a group of relatively good and data-independent (RGDI)
hash functions is recognized. The RGDI group initially includes the mapping, the additive
mapping, the shift-fold-loading, the Hu-Tucker code, FS(0,10,20,30) and FS(0,11,22,25), and
the division method.

As shown in Table 1, the Shin’s mapping hash method satisfies all three requirements
(i.e., distribution, speed, and cost) at the highest rank. This paper demonstrates that the Shin’s
mapping hash method is better than the broadly accepted division hash method in both software
and hardware implementation cases. In software implementation case, the Shin’s additive
mapping hash method is superior to the division hash method. the Shin’s method divides the sum
by the number of buckets (b) to produce a remainder as a hash address. In the Shin’s mapping
hash method, there will be no unemployed bucket in the hash table in contrast to the division
method which divides the combination by the largest prime number smaller than b to produce
a remainder as a hash address. In the division hash method, one has to use a prime number as
the hash table size to avoid a waste of buckets. It is a hash method with a rigid restriction on
choosing a hash table size. When a hash coder is implemented in hardware, the mapping hash
coder is faster and cheaper than the division hash coder. Therefore, the Shin’s (additive)
mapping hash method is recommended for all the applications that use a hash function.
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1 87 49 12 176 178 102 166

121 193 6 84 249 230 4 163
14 197 213 181 161 85 218 80
64 239 24 226 236 142 38 200

110 17 104 103 141 253 255 50
77 101 81 18 45 96 31 222
25 107 190 70 86 237 240 34
n 242 20 214 244 227 149 235
97 234 57 22 60 250 82 175

208 s 127 199 11 62 135 248

174 169 211 58 66 154 106 195

245 171 17 187 182 179 0 243

132 56 148 75 128 133 158 100

130 126 91 13 153 246 216 219

119 68 223 78 83 88 201 99

122 11 92 32 136 114 52 10

138 30 48 183 156 35 61 26
143 74 251 94 129 162 63 152
170 7 115 167 241 206 3 150
55 59 151 220 90 53 23 131
125 173 15 238 9 95 89 16
105 137 225 224 217 160 37 123
118 3 2 157 46 116 9 145
134 228 207 212 202 215 69 229
27 188 67 124 . 168 252 42 4
29 108 21 247 19 205 39 203

233 40 186 147 198 192 155 33
164 191 98 204 165 180 117 76
140 36 210 172 41 54 159 8
185 232 113 196 231 47 146 120
5t 65 28 144 254 221 93 189
194 139 112 43 ' 7N 109 184 209

Figure 1. Pearson’s Auxiliary Table T

procedure Pearson_Hash (var Hash_Value : integer);
var
i : integer;

begin
H() := 0;
fori:= 1to NUM_CHARS_IN_KEY do
begin
H(i) := T(Exclusive_Or (H( - 1), C(i)));
end;
Hash_Value := H(NUM_CHARS_IN_KEY);
end;

Figure 2. Pearson’s Hash Algorithm



N Exclusive_OR (Rotate_Right (N, 1))
N Exclusive_OR (Rotate_Right (N, 3))
N Exclusive_OR (Rotate_Right (N, 7))
N Exclusive_OR (Rotate_Right (N, 15))
N Exclusive_OR (Rotate_Right (N, 31))
N Exclusive_OR (Rotate_Right (N, 63))
N Exclusive_OR (Rotate_Right (N, 127))

2222222
IR R

where the statement "N := N Exclusive_OR (Rdtate_Right N, K))"
assigns the resulting value from exclusive-OR of both intermittent
value (N) and K bits rotated value of N back to the intermittent
value.

Figure 3. The Algorithm of Maurer’s Shift-fold-loading

SPACE: 000 n, N: 1010

a, A: 0010 0,0: 1011

b, B: 001100 p,P: 110000
¢, C: 001101 q, Q: 110001
d,D: 00111 r,R: 11001

e, E: 010 s, S: 1101

g, G: 01101 t, T: 1110
h,H: 0111 u, U: 111100
i,1: 1000 v, V: 111101
j,J: 1001000 w, W: 111110
k,K: 1001001 x, X: 11111100
LLL: 100101 y, Y: 11111101
m,M: 10011 z,Z: 1111111

-

Figure 4. Hu-Tucker Codes [KNUT1]



const
MAX NO_CHARS_IN_KEY = 16; {number of characters in a key}
MAX_NO_BUCKETS = 256; {number of buckets in the hash table}
NO_PRIMES_IN ROM = 64; {number of prime numbers in each ROM}

{Type for the array of 16 characters key}
Key_Array Type = array [1..MAX_NO_CHARS_IN KEY] of char;

var
{Array table of 64 prime numbers for each ROM}
Prime_Table : array [1..MAX_NO_CHARS_IN KEY, 0..NO_PRIMES_IN_ROM-1]

of char;
function Mapping_Hash (Key : Key_Array Type) : integer;
var
Temp, Char_No, Index : integer;
begin .
Temp := 0;
for Char_No := 1 to MAX_NO_CHARS_IN_KEY do
begin
Index : = ord(Key[Char_No]);
if Index > = NO_PRIMES_IN_ROM then
Index := Index - NO_PRIMES_IN_ROM;
Temp := EX_OR(Prime_Table[Char_No,Index], Temp);
end;
Mapping_Hash := Temp mod MAX_NO_BUCKETS;
end;

Figure 5. Shin’s Mapping Hash Algorithm
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< Distribution > < Speed > < Cost>
Hash Method MSD When Applied to Clock Cycles No. of Gates
RCN GCN RNS SW HW
Shin’s Mapping 393 4.06 4.07 96 3() 120 (2)
Avr. Avr. Avr.
Shin’s Additive 440 391 3.58 96 64 182 |
Mapping
Maurer’s Shift-fold- 395 4.06 3.81 420 70 384
f loading Avr. Avr. Avr.
Berkovich’s 409 397 3.70 826 (3) 128 (3) 399
Hu-Tucker Code
Shin’s
FS(0,10,20,30) 420 396 4.27 44 14 192
FS(0,11,22,25) 403 446 4.88
Division 551 535 4.48 70 46 390
(Divisor = 241) 16 (5) 3360 (5)
Pearson’s Table 20.63 21.23 21.15 82 82 280
Indexing
Digit Analysis 432 4.07 3.84 40 (6) 2(6) 112
(2 and 4 bytes) 3.80 4.70 19.74 96
Fold-boundary 4.09 3.89 53.02 56 1@4) 117
Midsquare 4.25 4.84 88.91 72 30 572
8(7) 2796 (7)
Multiplicative 442 329 12.49 407 64 422
17 (7) 2892 (7)
Radix 397 4.05 12.36 650 390 550
: 285 (7) 3234 (7)
120 (8) 6498 (8)
Random 425 3.63 9.79 162 80 470
57 (D) 3138 (7)
26 (8) 6402 (8)

(2) Sixteen 64*16 bits ROMs are also required.
(3) Changeable due to variable length encoded key string.
(4) Calculation time is measured after an encoded key is stored in the key register.
(5) Faster but expensive since special hardware (division array [CAPP1, STEF1]) is used.
(6) Analysis for digits is required beforehand.
(7) Faster but expensive due to Wallace Tree [WALL1] for multiplication.

(8) Both Wallace Tree and division array are used.

(1) Calculation time is measured after a key is stored in the key register.

Table 1. Performances of Hash Methods



Prime Numbers

The Mean Square Deviations of the Mapping Hash Method Using

Selected Bits for a Hash Address

Data Set 29 3-10 4-11 5-12 6-13 Average
i

RCN 3.74 3.83 413 420 3.77 3.93

GCN 4.41 4.54 391 383 3.60 4.06

RNS 3.95 4.05 440 374 4.22 4.07

Table 2A. Distribution Performance of the Mapping Hash Method with Prime Numbers

The Mean Square Deviations of the Mapping Hash Method Using

Random Numbers

Selected Bits for a Hash Address

Data Set 1-8 2-9 3-10 4-11  5-12 Average
RCN 3.95 3.72 469 4.06 4.20 4.12
GCN 3.48 3.63 3.87 3.89 3.70 3.71
RNS 3.77 3.91 403 4.48 4.16 4.07

Table 2B. Distribution Performance of the Mapping Hash Method with Random Numbers




Shin’s FS Data < Selected Bits >
Hash Function Sets 1-8 9-16 17-24 25-32

Shin’s RCN 4.48 3.88 4.20 3.84
FS$(0,10,20,30) | GCN 4.77 3.63 3.96 4.27
hash function RNS 3.44 4.58 4.41 3.56

R(0,2,4,6) => FS(0,2+8*1,4+8*2,6+8*3) = FS(0,10,20,30)

Data < Selected Bits>
Sets 1-8 9-16 17-24 25-32
Shin’s RCN 3.73 4.23 4.03 3.34

FS(0,11,22,25) | GCN 4.34 3.71 4.46 4.14
hash function RNS 3.51 4.19 4.88 3.94

R(0,3,6,1) => FS(0,3+8*1,6+8*2,1+8*3) = FS(0,11,22,25)

Data < Selected Bits >
Sets - 1-8 9-16 17-24 25-32
Shin’s RCN 4.23 4,12 441 4.02

FS(0,12,17,29) | GCN | 4.43 4.15 4.98 3.74
hash function RNS | 4.02 4.98 20.70 3.69

Il R(0,4,1,5) => FS(0,4+8*1,1+8%2,5+8*3) = FS(0,12,17,29)

ll Data < Selected Bits>
Sets 1-8 9-16 17-24 25-32
Shin’s RCN 3.80 3.84 4.46 3.83

FS(0,13,18,31) | GCN 3.55 4.33 5.09 3.63
hash function RNS 20.05 | 21.16 20.13 4.16

| R@,5,2,7) => FS(0,5+8*1,2+8*2,7+8*3) = FS(0,13,18,31)

Data < Selected Bits >
Sets 1-8 9-16 17-24 25-32
Shin’s RCN 4.07 4.11 4.05 4.42

FS(0,15,22,29) GCN 4.17 4.13 5.28 4.05
hash function RNS 53.02 20.64 21.60 21.00

|| R(0,7,6,5) => FS(0,7+8%*1,6+8*2,5+8*3) = FS(0,15,22,29)

Table 3. Distribution Performances of Shin’s Various FS (Fold-Shifting) Hash Methods



I The Mean Sqaure Deviations of the Division Method
L

Divisor Used RCN GCN RNS
241 (1) 5.51 5.35 4.48
242 4.94 5.34 21.91
243 4.43 4.52 4.98
244 4.78 4.80 21.00
245 4.19 5.39 4.95
246 4.48 3.94 21.02

I 247 4.28 4.67 4.49
248 4.15 4.56 20.51
249 4.29 5.66 4.21
250 4.90 4.66 20.73
251 3.80 4.30 4.34
252 4.55 4.24 20.48
253 " 4.09 4.84 4.92
254 3.95 4.12 93.72
255 5.77 8.23 | 107.82
256 (2) 25.63 20.20 | 502.54
257 . 5.67 11.95 | 122.99
258 4.59 4.45 93.13
259 4.85 6.60 4.10
260 5.07 5.11 20.28
261 3.13 4.99 3.95
262 4.58 3.51 21.38
263 (1) 4.71 4.31 4.68

(1) Prime Number Divisor --- 263 and 241
(2) Number of Buckets --- 256

Table 4. Distribution Performance of the Division Hash Method



The Mean Square Deviations of the Fold-boundary Method

Bits Selected RCN GCN RNS

11, 12, ..., 18 4.09 3.89 53.02

12,13, ..., 19 3.72 3.89 53.86 H
| 13,14, ...,20 __3.63 3.62 56.23 H

Table 5. Distribution Performance of the Fold-boundary Hash Method

The Mean Square Deviations of the Midsquare Method
Bits Selected RCN GCN RNS
11, 12, ..., 18 4.45 4.48 68.55
12, 13, ..., 19 4.76 5.13 72.52

b13, 14, ..., 20 4.25 4.84 88.91

Table 6. Distribution Performance of the Midsquare Hash Method



|| The Mean Square Deviations of the Shift-fold-loading method
u Bits Selected RCN GCN RNS
I 10, 11, ..., 17 4.29 4.13 3.88
20, 21, ..., 27 . 3.27 3.84 4.04
30, 31, ..., 37 3.79 4.66 4.45
I 40,41, ..., 47 4.13 4.11 4.07
| s0,51,...57 | 366 3.71 3.81
| s0,61,..,6 3.74 4.41 3.95
H 70, 71, ..., 77 3.83 4.54 4.05
| 80, 81, ..., 87 4.13 3.91 4.40
90, 91, ..., 97 4.20 3.83 3.74
100, 101, ...,107 3.77 3.60 4.22
| Average: 3.95 4.12 3.97

Table 7. Distribution Performance of Maurer’s Shift—fold-loading Hash Method
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~ Abstract

In this paper, Shin’s join algorithm which uses a divide and conquer strategy to accelerate
the join and several well known join algorithms are discussed. The paper illustrates how the
Shin’s join algorithm efficiently filters out all the unnecessary tuples with a maximum of five
readings for each join attribute. In contrast to other join algorithms, the Shin’s join algorithm
allows the join attribute comparisons after nearly 100 percent of the unnecessary tuples are
eliminated. The Shin’s join algorithm is recommended since it has less dependency problems
than the hash join algorithm has and it has an inherent characteristic of parallel processing.

The Shin’s join algorithm can be executed in various ways of parallel processing. The
algorithm is divided into two major processes: filtering process and merging process. The major
processes can be executed in parallel. Each major process can be further divided into
subprocesses which can be executed in parallel. Although the Shin’s algorithm is not hardware
dependent, this algorithm might be implemented in a database computer, HIMOD (Highly
Modular Relational Database Computer), for an efficient parallel execution of the two major
processes. In an initial design phase of the HIMOD, it is simply equipped with a general
purpose processor as a host and a parallel architecture join database coprocessor as a back-end
processor. The host performs merging process for the join while the join database coprocessor
mainly performs filtering process for the join. The join database coprocessor is designed to be
a speedy filter device which further accelerates the join.

I. INTRODUCTION
Ever since the relational data model was introduced by E. F. Codd’s paper [9] in 1970,
not only the naturalness of the two dimensional table structure but also the usefulness of the join

relational operation has been well recognized. It is necessary to emphasize the join operation
in design of database management systems. Since the join operation is a time-consuming but
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frequently used operation, increasing the speed of the join has been a popular issue for more
than 20 years. One of the goals of our research was to provide an optimal algorithmic solution
for accelerating the time-consuming join relational database operation. In this paper, Shin’s
algorithm will be described as a solution for the join. Moreover, a database computer which uses
the join algorithm will be illustrated to show how the join algorithm can be implemented in
hardware.

The join operation concatenates a tuple of the source relation (S) with a tuple of the target
relation (T) if the value(s) of the join attribute(s) in this pair of tuples satisfy a pre-specified join
condition, and it produces a tuple for the resulting relation (R). The join operation can be
illustrated in SQL using a SELECT-FROM-WHERE clause. When X.A is used to indicate that
attribute A from relation X is meant and X.* stands for all attributes of relation X, an example
of the join and the query the example are

Relation S Relation T

A B C D E F

d e f a d ¢

b d g d g a

h d b

SELECT S.* T.* JOIN S, T (S.B = T.E)
FROM S, T Relation R

WHERE S.B = T.E

o o fm
o o

A B C
b d g
h d b

SN v

In 1977, Blasgen and Eswaran [7] described several methods for evaluating a general
query, involving project, select, and join relational database operations. They compared the
methods based on which method had fewer accesses to secondary storage. In their examination
of the join operation, both nested-loop and sort-merge algorithms were analyzed and discussed.
Because of the work of these two authors, researchers were generally convinced that a nested-
loop join algorithm performed acceptably on small or large sized relations when a suitable index
existed. They concluded that a sort-merge join algorithm would be the choice when no suitable
index existed. Both nested-loop and sort-merge join algorithms and their actual implementations
will be discussed later in greater detail.

Based on the nested-loop and the sort-merge join methods, tuples that are not necessary
to the resulting relation for the join will be included until the last moment although they are not
necessary to the resulting relation. Assuming that the amount of data in the source and target
relations is large, but the amount of resulting tuples are relatively small, then most of the tuples
in the source and target relations are not needed in producing the output for the join. However,
all of those irrelevant tuples are also brought to main memory from secondary storage via the
I/O channel; as a consequence the channel becomes congested, which, in turn, creates the
aforementioned 1/0 bottleneck. Many researchers have broached designing a database filter for
the join operation to reduce the problem of channel congestion. Several database computers such
as CAFS [3], SURE [31], VERSO [16], and DBC [16] have been designed based on the concept
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of database filtering.

Since the cost of the main memory has been substantially reduced, hash join algorithms
have been recognized for a great potential. It is now a well-known fact that the join algorithm
based on hashing is more advantageous than nested-loop or sort-merge join algorithms [13].
One noticeable difference of hash-based join algorithms is that they minimize the amount of data
moved during the process of executing a join algorithm. In 1988, the authors had a thought that
an optimal algorithmic solution for the join had not yet been found. Join algorithms, such as
nested-loop, sort-merge, and hash, require frequent join attribute comparisons which may result
in more data movements. The hash join algorithms has dependency problems which will be
discussed later. Shin’s join algorithm uses hashing for division process, and eliminates and
merges data efficiently for conquer process to lessen data movements. In Section II, the four
major join methods are illustrated: the nested-loop join algorithm, the sort-merge join algorithm,
the hash join algorithm, and the Shin’s join algorithm. The time complexities and problems of
join algorithms are discussed in Section III. Section IV describes HIMOD-a database computer
that may effectively perform the Shin’s join algorithm. Results of performance evaluation
studies are presented in Section V. Finally, in Section VI we give concluding remarks and
suggest some directions for future research.

II. FOUR MAJOR JOIN ALGORITHMS

In this section, we give a brief overview of the algorithms published until now for the
join operation. We describe the approaches for the join in three separate subsections.

A. The Nested-Loop Join Algorithm

The nested-loop join method is the simplest among the three major algorithms. The two
relations involved in the join operation are called the outer relation (or source relation) S and
the inner relation (or target relation) T, respectively. Each tuple of the outer relation S is
compared with tuples of the inner relation T over one or more join attributes. If the join
condition is satisfied, a tuple of S is concatenated with a tuple of T to produce a tuple for the
resulting relation R.

B. The Sort-Merge Join Algorithm

Each of the source (S) and target (T) relation is retrieved, and their tuples are sorted over
one or more join attributes in subsequent phases using one of many sorting algorithms (e.g., n-
way merge). After the completion of the sorting operation, the two sorted streams of tuples are
merged together. During the merge operation, if a tuple of the relation S and a tuple of the
relation T satisfy the join condition, they are concatenated to form a resulting tuple.
C. The Hash Join Algorithm

The join attributes of the source relation (S) are first hashed by a hash function. The
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hashed values are used to address entries of a hash table called buckets. The same hash function
is used for the join attributes of the target relation (T). If the join attribute of a tuple is hashed
to a non-empty bucket of the hash table and one of the join attributes stored in that bucket
matches with the join attribute, the equi-join condition is satisfied. The corresponding tuples
of the S and T relations are concatenated to form a tuple of the resulting relation (R). The
process continues until all the tuples of the target relation have been processed.

D. The Shin’s Join Algorithm

In Shin’s join algorithm, the source and target relations are repeatedly divided (hashed
or rehashed) by a maximum of five functionally different hash coders until a group of source
tuples and target tuples are found to have an identical join attribute. If a group of source tuples
and target tuples are found to have an identical join attribute after a division process, the source
and target tuples in the group are then merged in order to produce tuples for the resulting
relation.

A stack is the essential data structure used in the SOFT (Stack Oriented Filter Technique)
and the Shin’s join algorithm as shown in Figure 1. Each stack item consists of a pair of two
hash tables: one for source tuples and the other for target tuples. The stack pointer keeps track
of the top item of the stack whenever a stack item is pushed into or popped from the top of the
stack. Stacks in the Figure 1 depict changes in the stack. In the process of Shin’s join, a
maximum of five pairs of hash tables can be created. A source hash table includes 256 bucket
pointers for the linked lists of source tuples, and a target hash table also includes 256 bucket
pointers for the linked lists of target tuples. Any suitable numbers can be chosen instead of five
and 256. Assuming that both input relations fit in main memory (e.g., main memory database
(MMDB)), they are divided into a maximum of 256 linked lists for each relation by the first
hash coder, as shown in step 1 in Figure 1. After the source and target tuples are hashed by the
first hash coder, the tuples in the source subset file (Si) can possibly match with only the tuples
in the target subset file (Ti). If an empty subset file exists, all tuples in the pair of the subset
files would be eliminated since they have no potential to be included in the resulting relation.

As shown in step 2 in Figure 1, the join attribute values of the source tuples are hashed
by the second functionally different hash coder; as a result, the source tuples are stored in
addressed buckets in the source hash table. Using the same hash coder, the target tuples are
hashed and stored in the target hash table. While the tuples are being divided into a maximum
of 256 groups, the first produced hash address is compared with the subsequently produced hash
addresses to see if the produced hash addresses are the same. If so, the source tuples and target
tuples are merged. After the hashing process, four kinds of pairs of buckets (ij) will be possibly
created. The pairs may appear in the following combinations:

(1) The source bucket (Sij) and the target bucket (Tij) are not empty.

(2) Sij is not empty, but Tij is empty.

(3) Tij is not empty, but Sij is empty.

(4) Sij and Tij are empty.

When one of the two buckets is empty, the tuples in the corresponding bucket are unnecessary;
therefore, they are filtered out. The filtering scheme is one of the major concepts in Shin’s
SOFT.



The Shin’s Join algorithm provides the termination condition for no further division
process as an idea in the SOFT. The SOFT checks if the termination condition for no further
division process is satisfied. If the produced hash addresses in a group of source and target
tuples are identical, the Shin’s join algorithm stops dividing a group of source and target tuples
and starts merging the source and target tuples. Based on the current stack level, a maximum
of five functionally different hash coders (as will be shown in parallel architecture filter unit of
HIMOD) might be involved in checking the termination condition. If their logical ANDed result
show that only a single hash address is produced from each involved hash coder, the group of
source and target tuples can be merged without final screening.

The algorithm proceeds from the pair of buckets of address O to the pair of buckets of
address 255 checking if both source and target buckets are not empty. When both buckets are
not empty, the next bucket address is saved and the tuples in the source bucket and the
corresponding target bucket will be rehashed (or divided) by the next functionally different hash
coder. During the rehashing process, the algorithm compares the first produced hash address
with the others. If the produced hash addresses are identical, the tuples are merged; otherwise,
the tuples are divided further by another functionally different hash coder.

Steps 3, 4, and 5 in Figure 1 can be explained similarly. In step 6, no available hash
coder is left and unnecessary data have been filtered; therefore, the source and target tuples are
merged without being rehashed. As far as data structure is concerned, the linked list data
structure is better than the array data structure for the buckets in steps 2 through 5 (in Figure
1) because in these steps most of the buckets may be empty. Therefore, by using the linked lists
for the buckets, memory space can be conserved.

In order to eliminate 100 percent (i.e., greater than 99.9999999999% which is equal to
1 - 1/(256**5)) of unnecessary data, join attributes are to be hashed by a maximum of five
functionally different hash coders to figure out all the produced hash addresses are the same. The
multiple hash calculations can be effectively implemented using a parallel architecture as
discussed in the architecture of HIMOD. Therefore, two kinds of software implementation of
Shin’s join algorithm is left to one’s choice: a maximum of five hashings for each join attribute
at a time and a single hashing in each reading of a join attribute. If one uses the second way for
his software implementation, the filtering effect reaches more than 99.609375% (i.e., greater
than 255/256) and final screening might be needed for a merge.

As shown in Figure 2, push and pop are the names of procedures operating in the stack.
The procedure push inserts a pair of source and target hash tables onto the top of the stack and
increments the stack pointer. The procedure pop deletes a pair of source and target hash tables
from the top and decrements the stack pointer. The stack pointer always points to the current
pair of hash tables (the item at the top of the stack). By referring to the value in the stack
pointer, the function Bottom_Of_ Stack can tell whether the stack pointer points to the first or
lowest pair of hash tables as the current item of the stack.

In the Shin’s join algorithm, there are several other frequently used procedures such as
Assign_Source_And_Target, No_More_Next_Bucket_Addr, and Save_Next_Bucket_Addr. The
module Assign_Source_And_Target uses the header pointers of both source and target linked
lists based on the saved next bucket address of the current pair of hash tables in order that the
tuples in the linked lists are processed through the filter again. Each next bucket address is
incremented and saved to keep track of the subsequent bucket address. Whenever the procedure
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Assign_Source_And_Target is called, another next bucket address, which has non-empty buckets
for both source and target hash tables, is found and saved by the procedure termed
Save_Next_Bucket_Addr. As a result, the procedure push saves the contents of the current pair
of hash tables and increments the stack pointer in order that the next upper pair of hash tables
becomes the current one or the top of the stack.

When pop is called, the stack pointer is decremented in order that the pair of hash tables
directly under the current one becomes the current pair of hash tables. After the pop, the
boolean function No_More_Next_Bucket_Addr should be called in order to see if there is any
saved next bucket address for the current pair of hash tables. If there is none, the current pair
of hash tables is checked to see if it is the first (or lowest) one. If so, the join process is
terminated by breaking the repeat loop.

The algorithm shown in Figure 2 is an explanatory version of the main module of a
simulation program for the Shin’s join algorithm. One can also implement the Shin’s join
algorithm in a recursive routine which uses a binary tree, following the convention of leftmost-
child and right-sibling tree representation. The nature of recursion in the algorithm simplifies
the architectural structure of the database computer which implements the Shin’s join algorithm.
The nonrecursive implementation of the algorithm in Figure 2 is useful and practical because the
stack has only five items. The nonrecursive algorithm can also be easily implemented in a
microprogram.

III. DISCUSSION

When the number of tuples in the source relation (the smaller relation) is S, the number
of tuples in the target relation (the larger relation) is T, and the number of tuples in the resulting
relation is R, then the time complexity of nested-loop join algorithm is O(S*T). Since upper
bound of S and T is N, O(S*T) can be represented as O(N*N). The time complexity of the sort-
merge algorithm is O((S+T) log (S+T)). It can be represented as O(N log N) since the total
number of the input tuples (N) is S+T. Considering only the time complexities, the sort-merge
join should outperform the nested-loop join. However, as mentioned before, if a suitable index
exists, a nested-loop can be a choice as well according to Blasgen’s analysis [7].

For parallel join operations, Bitton and his research colleagues analyzed parallel sort-
merge and parallel nested-loop join algorithms and concluded that, when the sizes of the two
relations to be joined are approximately the same, the parallel sort-merge algorithm is superior
to the parallel nested-loop algorithm [6]. Furthermore, they added that when one relation is
larger than the other, the parallel nested-loop algorithm is faster.

To derive an asymptotic time complexity for a simple hash join algorithm, the number
of buckets (B) in a hash table and the number of buckets in a divided hash range (D) are also
considered in addition to S, T, and R. The time complexity of the hash join algorithm is
represented as O((S+T)*(B/D) + R). In proportion to cheaper main memory cost, more
memory space becomes available; consequently, the number of repetitions for hashing process
(B/D) are reduced since the value of D gets larger. Therefore, the time complexity for the hash
join algorithm can be simplified as O(S+T+R). Assuming that R is relatively smaller than
S+T, it becomes O(S+T). Since S+T is actually the total number of the input tuples(N), the
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time complexity can be represented as O(N). It is believed that the time complexity of the join
operation cannot be better than O(N) since join attribute in every input tuples must be read at
least once.

Considering actual performances, it is hard to rely only on asymptotic time complexity
analysis to measure the speed performance because I/0 time, communication overhead, and a
number of accesses to the secondary storage are also needed for a more accurate analysis.
However, in the future when necessary hardware including main memory is sufficiently
provided, the time complexity will be more reliable.

When sufficient main memory is affordable, the hash-based join has the greatest
advantage [13, 23, 24]. The performance of the hash join algorithm is largely dependent on the
distribution performance of a chosen hash function. If the chosen one poorly distributes the
tuples, the worst case may occur. Accordingly, the dependence on a chosen hash function is
absolute and large in the performance of the hash join algorithm. In contrast to the hash join
algorithm, the Shin’s join algorithm uses five functionally different hash coders, so it is much
less dependent on the performance of a chosen hash coder than the hash join algorithm.

The hash join algorithm usually requires a flexible size hash table and a preprocessing
for hash table size calculation for each hashing process. The usage of flexible size hash table is
not recommended for a hardware implementation of hash table in a database machine. If it uses
a fixed size hash table, performance will be greatly

Another problem resides in frequent join attribute comparisons of the hash join algorithm.
The architecture of the database computer that implements the join attribute comparison might
be complex. Join attribute comparisons include the comparisons for unnecessary tuples which
will not be included in a resulting relation. A join attribute comparison takes much longer time
than a hashing of a join attribute takes. An effective hardware hash coder such as Shin’s
mapping hash coder [25] can calculate a hash address within only a few machine cycles. It is
strongly suggested that join attribute comparisons should be performed after all the unnecessary
tuples are eliminated.

The Shin’s join algorithm requires a maximum of five readings for each join attribute .5
determine whether the associated tuple is necessary or not. Therefore, the time complexity of
the algorithm is represented as O(5*N), so it can be simplified as O(N). Comparing the Shin’s
join algorithm with others, one can see that none of the currently existing join algorithms
effectively takes advantage of any filtering scheme while the Shin’s algorithm filters unwanted
data efficiently. The Shin’s join algorithm requires only fixed size hash tables which are
favorable for a hardware implementation. Moreover, the performance of the Shin’s join
algorithm has much smaller dependency in the distribution performance of a chosen hash
function than that of the hash join algorithm does. Section V will describe how the Shin’s join
algorithm is implemented in a newly developed back-end database computer to detect and filter
unnecessary data for the join.

IV. DATABASE COMPUTER HIMOD

The parallel computer architecture that facilitates a faster join and the Shin’s join
algorithm, which can perform best when using the architecture, are presented in this paper. The
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database computer which is discussed in this paper is named as HIMOD (Highly Modular
Relational Database Computer). It uses a single back-end processor fabricated in a single chip
[1] in its initial stage of development. The database back-end processor (DBCP) in HIMOD is
especially dedicated to the join database operation.

A. An Overview of HIMOD Architecture

Shin’s join method [25] used in HIMOD is divided into two processes: filtering process
and merging process. Figure 3 depicts the interface between the host and the back-end and
illustrates the parallel execution of filtering process and merging process. As shown in Figure
3, the host requests a join operation of a source relation and a target relation. Then the back-
end will receive the request and perform the join of the source and target relations. Filtering
unnecessary tuples, the back-end transmits the pointers to the tuple lists to the host processor
whenever it finds the tuples that will be included in the resulting relation. The linked source
tuple(s) and target tuple(s) are retrieved from the main memory and merged by the host
processor. Therefore, parallelism is exploited in the join operation so that the filtering process
and the merging process are concurrently executed by the special purpose back-end and the
general purpose processor (host) respectively, as is indicated in Figure 3. The idea behind the
Shin’s join algorithm in the database computer HIMOD contends that the host processor handles
the only tuples that are necessary to be included in a resulting relation. The host processor is not
burdened with carrying many join attributes and comparing them for a match. The filtering
scheme in HIMOD is accomplished by the Shin’s join algorithm.

HIMOD uses a Motorola 68000 family microprocessor as the host (or the front-end as
one might consider) processor. The back-end processor communicates with the host processor
through a protocol, which is defined as the M68000 coprocessor interface [18]. The connection
between the host processor unit (HPU) and the database coprocessor (DBCP) develops from a
simple extension of the M68000 bus interface. The DBCP is connected as a coprocessor to the
host processor, and a chip select signal, decoded from the host processor function codes and
address bus, selects the DBCP. The host processor and the coprocessor configuration is shown
in Figure 4. All communications between the HPU and the DBCP are performed with standard
M68000 family bus transfers. The DBCP contains a number of coprocessor interface registers,
which are addressed by the host processor in the same manner as memory.

B. Architecture of the Host Processor

Since the simple M68000 coprocessor interface incorporates the design of the database
coprocessor, the M68000 family microprocessor is selected for the host processor of HIMOD.
The HIMOD may use a general purpose processor (e.g., a Motorola 68000 family
microprocessor) as a software back-end for the join. The software back-end dedicates itself to
performing only join operations. The Shin’s algorithm might be implemented on the software
back-end instead. In this case, there is no hardware change or enhancement on the database
coprocessor except for the interface unit. The software back-end approach might be

‘recommended for some of operations in the database management systems.



C. Architecture of the Hardware Back-End

The new hardware back-end processor is intended primarily for use as a database
coprocessor(DBCP) to the M68000 family microprocessor unit (HPU). This database
coprocessor provides a high performance filter unit which is designed by Shin [25]. As shown
in Figure 5, the database coprocessor is internally divided into three processing elements: the
bus interface unit, the coprocessor control unit, and the filter unit. The bus interface unit
communicates with the host processor, and the coprocessor control unit sends control signals to
the filter unit in order to execute the intended database operation. For both the bus interface unit
and the processor control unit, the DBCP uses the conventions of the MC68881 and MC68882

floating-point coprocessor chips [19].

1) Bus Interface Unit

The bus interface unit contains the coprocessor interface registers (CIRs), the CIR
register select and timing control logic, and the status flags that are used to monitor the status
of communications with the host processor. The CIRs are addressed by the host processor in
the same manner as memory. All communications between the host processor unit and the
DBCP are performed with standard M68000 family bus transfers [18]. The M68000 family
coprocessor interface is implemented as a protocol of bus cycles during which the host processor
reads and writes to these CIRs. A MC68000 family host processor implements this general
purpose coprocessor interface protocol in both hardware and microcode.

2) Coprocessor Control Unit

The control unit of the DBCP contains the clock generator, a two-level microcoded
sequencer, and the microcode ROM. The microsequencer either executes microinstructions or
awaits completion of accesses that are necessary to continue executing microcode. The
microsequencer sometimes controls the bus controller, which is responsible for all bus activity.
The microsequencer also controls instruction execution and internal processor operations, such
as setting condition codes and calculating effective addresses. The microsequencer provides the
microinstruction decode logic, the instruction decode register, the instruction decode PLA, and
it determines the "next microaddress" generation scheme for sequencing the microprograms.
The microcode ROM contains the microinstructions, which specify the steps through which the
machine sequences and which control the parallel operation of the functionally equivalent slices
of the filter unit.

3) Filter Unit ‘

One of the main tasks of the DBCP is to release the host from tedious database
manipulation for the relational join by filtering tuples that do not have any potential for inclusion
in the resulting relation. To this end, the DBCP sends only the potential tuples to the host
processor. The filter unit of the DBCP is the heart of the coprocessor in determining
unnecessary data and discarding them. As shown in Figure 6, the filter unit of the DBCP
includes join attribute extractor, transmittal and retrieval subunit, condition code, stack pointer
register, and five functionally different mapping hash coders with associated SAT (source and
target single-bit wide random access memories) and associated HAC (hash address comparator).
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The join attribute extractor receives a join attribute(s) (or a tuple dependent on given data
structure) and transmits the join attribute value to the five attached hash coders. Compared to
well-known hash methods (e.g., the division method), the Shin’s mapping hash coder distributes
keys effectively and the mapping hash coder which is much faster and cheaper. Thus the
hardware implementation of the mapping hash function [25] is used in the hash coder of
HIMOD. The hash addresses generated by functionally different mapping hash coders using a
join attribute as an input key are independent of each other, but the address calculation times
required by functionally different mapping hash coders are always the same and they are only
a few machine cycles. The property of statistical independence in the mapping hash function
is valuable in this application.

The SAT includes two single-bit wide RAMs. One RAM (source RAM) is for a group
of source tuples, and another (target RAM) is for a group of target tuples. The single-bit wide
RAM has 256 bits. Each bit in a RAM is addressed by a hash address. Each SAT is connected
with a hash address register in an associated HAC. The hash address register is equipped with
an increment function so that the address register will keep track of the next bucket address to
be processed, and will feed it to the connected SAT. Therefore, each SAT has a built-in
multiplexer to select the right address at any time as is shown in Figure 7. The controller sends
signals to the control lines of the multiplexer for the right selection of an address. The
controller also sends memory write signals to both source and target single-bit wide RAMs.
Therefore, when the tuples in the source relation are scanned, the single-bit wide source RAM
is marked based on the hash address from the hash coder.

By the same system, when the tuples in the target relation are scanned, the single-bit
wide target RAM is marked instead. When the multiplexer in the SAT selects a hash address
from the corresponding HAC, the hash address is used to determine if one of source and target
buckets is empty. This can be done by detecting hash-addressed bits if both the source RAM
and target RAM are ’1’. The single-bit output from the source RAM and the target RAM are
then logically ANDed. The resulting single-bit output is sent to the corresponding HAC in order
to determine whether or not the tuples in the source and target buckets have to be processed.
If one of the buckets is empty, then tuples in those buckets will be eliminated as is described in
the SOFT of the Shin’s join algorithm.

The hardware structure that enhances this filtering technique also should be explained.
The architecture of the DBCP is characterized by a stack oriented structure of five fairs of SAT
and HAC. If there are any SATSs lower than the current SAT (which is pointed by the stack
pointer), they are saved in the stack and deactivated during the filtering process. The current
SAT participate in the filtering process. The contents of the current SAT are cleared first and
the bits in the SAT marked as the hash addresses are then produced. When a SAT is saved in
the stack, a file or a list of input tuples are divided and distributed into the addressed buckets
in the hash table according to the prior level hash coder in the stack. The divided list of source
tuples and the list of target tuples are passed through the filter again using the current and higher
HAG:s if their join condition attributes are not detected as identical. Thus the source and target
relations are divided repeatedly, discarding unwanted tuples, until the DBCP determines that the
partitioned lists of the source and target tuples have the same join attribute. Ultimately the
pointers to the partitioned lists of the source and target tuples are sent to the host processor, and
a series of source tuples and a series of target tuples are retrieved and merged to produce the
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resulting tuples.

To efficiently determine whether or not the scanned source tuples and target tuples have
the same join attribute, a HAC is attached to each of the five hash coders. The HAC is
designed so that it sends a signal to the controller to stop dividing the tuples, as is explained
below. The HAC consists of a hash address register which keeps a record of the first hash
address produced by the corresponding hash coder and the number of exclusive-OR gates, the
OR gate, and the JK flip-flop. Each incoming hash address is compared with the first produced
hash address, as illustrated in Figure 8.

In order to load the first hash address, a controller sends a signal (’1’) to load the first
produced hash address into the hash address register. Once the first hash address is loaded, the
controller does not allow other hash addresses to be loaded into the hash address register. In
each HAC, the same number of exclusive-OR gates, as the number of bits in a hash address
register, are needed. The first bit of the address loaded in the hash address register and that of
an incoming hash address are inserted into the first exclusive-OR gate. If both are the same,
the output of the exclusive-OR gate is ’0.” If they are not the same; that is, if one input bit is
’1’ and another is ’0,’ then the output is ’1,” and it is passed to the OR gate. The OR gate
simultaneously receives all the resulting output signals from those exclusive-OR gates. If all of
the resulting bits are *0,’ the output of the OR gate is ’0,’ indicating that both hash addresses
are identical. If at least one of the resulting bits from the exclusive-OR gates is '1,’ then the
output of the OR gate becomes ’1,’ signifying that the loaded hash address in the hash address
register and the incoming hash address are different. Then the output (’1’) of the OR gate
triggers the K input of the JK flip-flop (The output of the JK flip-flop is initially cleared to be
1’ by the controller.), so the output of the JK flip-flop becomes 0. Therefore, the five
structurally identical HACs in the DBCP generate output signals at the same time.

The HAC has a second purpose. If the HAC is pushed into the stack, the hash address
in the HAC is used to keep track of the next bucket address to be processed. Just before the
HAC is pushed into the stack, the hash address register is cleared by the controller. The first
hash address is, therefore, ’0,” and the bucket zero is examined if it is empty. The inverted
signal from the connected SAT tells whether or not both the source and target buckets are
empty. If at least one of the buckets is empty, and if the controller allows it, the inverted signal
(’1’) increments the hash address register. This incrementing process is repeated until a pair of
non-empty buckets is found. Before the source and target tuples in those buckets are further
processed, another pair of non-empty buckets is found and the bucket address is stored in the
hash address register. This bucket address is stored in the stack for later use. As a result, when
the HAC is stored in the stack, the associated hash address register is used to store the next non-
empty bucket address.

The hardware for hash address comparison, required to detect whether all the join
attributes in a file or list are identical, merits elucidation. The purpose of this hardware is to
inform the controller whether or not the input file or list should be divided further. If so, the
DBCP eventually sends the pointers to the source and target tuples having the same join
attribute to the host processor for concatenation. As shown in Figure 9, the five HACs are
stacked. Based on the value in the stack pointer register, the 5-to-1 multiplexer selects one from
the five inputs. When the stack pointer designates the first (i.e., the lowest) stack level, all the
outputs from the HACs are ANDed, and the resulting output of the AND gate (D) is selected
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by the multiplexer. If the stack pointer specifies the second stack level, the first SAT is saved
in the stack and is not written until the controller sends a memory write signal to the SAT. The
output of the first HAC is, therefore, excluded from the inputs into the AND gate (C), and
outputs of the second, third, fourth, and fifth HACs are ANDed. Likewise, if the indicated
stack level is the third level, the first and second SATs are saved in the stack and the multiplexer
chooses the output of the AND gate (B), which receives the outputs from the third, fourth, and
fifth HACs as inputs. If the indicated stack level is the fifth (the highest) level, the four lower
level SATs are saved and the multiplexer selects the output directly from the fifth level HAC.
The stack configurations explains the stack in the SOFT shown in Figure 1.

The single bit output from the multiplexer triggers the attached JK flip-flop if, after a
whole input file or list has been scanned, all the HACs, which are equal or higher than the
current stack level, indicate that only one kind of hash address has been produced from each
hash coder. The output value of the JK flip-flop is then sent to the controller. The controller,
based on the value from the JK flip-flop, then decides either to continue a division process or
to require a conquer process. In the conquer process, the controller allows transmittal and
retrieval subunit to send pointers to the lists of the necessary source and target tuples to the host
processor for a merge to produce resulting tuples. The transmittal and retrieval subunit figures
out the pointers (addresses in main memory) to the lists of the source and target tuples using the
current stack level and a saved bucket address in a selected HAC as inputs. Then the transmittal
and retrieval subunit sends the obtained pointers to the wanted tuple lists to the host for a merge.
Even though the output signal indicates that no further division process is necessary, there is
fewer than one chance in a trillion (1/(256**5)) that the signal will pass an unwanted key.
Although the final screening is not necessary due to the 99.9999999999% filtering effect, the
final screening with direct comparisons by the host processor will eliminate the spurious key,
if it is present. Because this chance is extremely small, the host processor will not waste time
dealing with unnecessary data and the direct comparison of join attributes is not needed.

In addition to the SOFT, the HIMOD database computer may employ the hashed address
bit array stores filtering technique in CAFS [3]. The previous design of the HIMOD [25] uses
the filtering technique in CAFS. In order to employ the technique in the HIMOD, a new scheme
for the hash coders, so called dynamic hash coders, might be needed due to differences in
architectures. In this scheme, each dynamic hash coder generates statistically independent hash
address based on the current stack level information. At this point, a database computer designer
may consider cost versus performance trade-offs. In this paper, the filtering technique in CAFS
is not included in the design of HIMOD.

The whole filter unit is designed to support the divide and conquer strategy in performing
the join relational database operation. Therefore, the filter unit should know when no further
division of input is necessary. A group of HACs determines whether or not the scanned tuples
have the same join attribute, and provides information to the controller concerning further
division process or sending the desired tuples to the host processor.

The major operation in the filter unit is the hashing for dividing and filtering tuples. A
maximum of five hash coders may participate in producing hash addresses in parallel. Both the
parallel architecture of the hardware back-end DBCP for the five hash coders and the parallel
architecture of each hash coder can drastically reduce the execution time of the join. Since the
software back-end cannot take advantage of the speed of parallel processing, one may think
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about a hardware back-end DBCP before deciding.

V. SIMULATION RESULTS:
A COMPARISON WITH THE CONVENTIONAL JOIN METHODS

The simulation was performed on an IBM 4381 mainframe computer based on the initial
design of HIMOD. The combined data set contains 2,048 name tuples, which is read into the
system in order to create both the source relation and target relation. As each tuple is scanned,
the initial letter of the last name is compared to the discriminator character variable. For
example, if the discriminator is set to be "K," then the name tuples whose last name initials are
from "A" to "K," are inserted into the source relation, while all others will be inserted into the
target relation, e.g., "L" to "Z." For each name, the last name is used as a join conditional
attribute, and the hash address is calculated using only the last name. The whole name is used
to produce a hash address in the hash algorithm experiments. After creating the source and
target relations, the equi-join operation is performed on those input relations in order to produce
the resulting relation for the join. The source, target, and correct resulting relations are printed
as proof that the algorithm logically works.

As shown in Table 1, the number of tuples brought into the processor is selected as the
major measurement of overall performance, although there are other factors to be considered,
such as the number of disk accesses, the number of join attribute comparisons, and I/O time.
Since more data movements might create frequent disk accesses, which will in turn slow the join
operation, the fewer number of tuples brought into the CPU, the shorter the response time will
take for the join. In this particular case, on average, the Shin’s join method takes about two
hundred times (3386657/17637) less data movements than the conventional nested-loop join
method. The main reason for this contrast in performance is that the Shin’s join method
eliminates all unnecessary data (99.9999999999 %) in the filtering process while dividing the
source and target relations into groups of tuples so that source tuples in a group will be matched
only with those target tuples in a corresponding group. Removing unnecessary data, while
hashing and dividing, helps reduce data movements drastically. The conventional nested-loop
join, sort-merge join, and hash join, on the contrary, carry around every tuple (even if most of
them are not wanted) all the way to the last moment before they discover it is an unnecessary
tuple through direct comparison of join attributes. The direct comparison of join attributes is a
complex and time-consuming operation compared with a hashing of a join attribute. The hash
join algorithm is not very efficient since it has to go through direct comparison of join attributes
for the tuples including unnecessary ones.

The time complexity of the Shin’s join algonthm is O(N). This time complexity is
actually the same with that of the hash join algorithm. However, the Shin’s join algorithm may
outperform the aforementioned join methods because none of them includes the concept of
filtering in their algorithms and they always have to compare join attributes rigorously for a
merge. The repeated direct comparisons may slow the system; however, in the Shin’s join
method, the direct comparison of the join attributes is only allowed after all of unwanted data
are cast out. The performance of the hash join algorithm becomes poor when a chosen hash
function distributes keys poorly. The hash join algorithm is not recommended due to it’s heavy
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dependence on the chosen hash function.

Another merit of the Shin’s join algorithm is that the hash table size is fixed so that one
does not need to calculate a suitable hash table size for each join operation. Usually, the
performance of hash join method is largely dependent on the ratio of the selected hash table size
to the number of input tuples in a smaller relation. It is certainly an overhead to calculate a hash
table size based on the number of input tuples prior to each hash join operation. The Shin’s join
algorithm is also recommended because hash join algorithm is relatively data-size dependent
while the Shin’s algorithm is not.

VI. CONCLUSIONS AND FUTURE RESEARCH

A. Summary and Conclusions

The major bottleneck in relational database management systems develops from the
frequently used and time-consuming join operation. Thus, it is apparent that accelerating the
join operation will improve the performance of relational database management systems. In this
paper, four join algorithms are mainly illustrated: the nested-loop algorithm, the sort-merge
algorithm, the hash algorithm, and the  Shin’s algorithm. The nested-loop and sort-merge
algorithms were used in many database computers during the early stages of database machine
development. The hash-based join algorithms become prevalent due to the affordability of the
main memory.

Comparing the Shin’s join algorithm with others, one can see that none of the currently
existing join algorithms effectively takes advantage of any filtering scheme while the new join
algorithm filters unwanted data efficiently. Moreover, the Shin’s join algorithm has an advantage
in a parallel processing because parallelism is one of the important characteristics of the Shin’s
join algorithm. In the Shin’s join algorithm, filtering and merging processes can be executed in
parallel, and the process of filtering tuples in partitioned linked lists can also be divided into
subprocesses to be executed in parallel.

This paper describes the Shin’s join algorithm and outlines an ideal approach for filtering
unnecessary tuples, and discusses the highly modular relational database computer, HIMOD,
equipped with a single chip back-end processor for the join operation. The Shin’s join method
are divided into two major processes: the filtering process and the merging process. In the early
stage of HIMOD database computer development, the filtering process is performed by the back-
end processor (DBCP), and the merging process is executed by the host processor whenever it
receives source and target lists of tuples from the DBCP. The parallel multiprocessing was not
chosen for this study due to its complex synchronization problems and lack of cost effectiveness.
However, in future research it would not be excluded from the study. HIMOD may have
multiple back-ends to accelerate the filtering process or may use general purpose processors as
back-ends to accelerate the merging process. In the course of this research, a single join back-
end processor with specialized hardware which maximizes the filtering effect during the hashing
process has been developed.

The join database coprocessor repeats the division and filtering process many times in
a recursive way; therefore, nearly 100 percent of unnecessary tuples are filtered. After
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repetitive division and filtering processes, the remaining tuples in the source and corresponding
target list have an extremely high probability of having identical join attributes. The remaining
source and target tuples are sent to the host processor and merged. All other tuples are
eliminated before unnecessary comparison of their join attributes begins. This elimination of
unnecessary tuples substantially reduces the number of join attribute comparisons. As a result,
total data movements in performing a join are radically diminished.

The output of the join simulation program shows that the Shin’s join algorithm is
logically correct. Furthermore, the number of tuples passed through the processor in the
simulation manifests how effectively the Shin’s join method has cut down data movements. The
distinguishable difference between the Shin’s join algorithm and other hash-based join algorithms
is that, in the Shin’s join algorithm, the filtering process is combined with the hashing process.
Accordingly, unnecessary data are detected and filtered while other join algorithms may carry
unwanted tuples up to the last moment of join attribute comparisons.

This research has produced a new database computer using the Shin’s join algorithm.
The algorithm will shorten the time needed for a join, since it frequently filters unnecessary
data. No time-consuming direct join attribute comparison in the Shin’s algorithm merits serious
consideration in choosing a join algorithm for an implementation because the currently existing
join algorithms has to go through tedious direct join attribute comparisons. There is another
great merit in eliminating all the unnecessary tuples with a maximum of five readings for each
tuple. The database computer HIMOD can further accelerate the join because it employs the
parallel execution of the filtering process and the merging process to accomplish the Shin’s join
method. To maximize the speed of the filtering process, the filter unit in the join database
coprocessor is organized as a stack. As far as the Shin’s join algorithm is concerned, the stack
oriented filter unit eliminates unnecessary tuples in the most effective way.

B. Future Research

For future research, a database computer with multiple back-ends using the Shin’s join
algorithm would be a fruitful research topic since the algorithm has an inherent characteristic
of parallel processing. This research topic will be more emphasized due to a huge demand for
real time DBMS (or Main Memory DBMS) with high speed networking (e.g., ATM and fiber
optic networks). As shown in step 1 and step 2 of Figure 1, a single back-end processor can
detect and eliminate unnecessary tuples in only one pair of linked lists at a time. If two or more
identical back-ends are provided, those linked lists are processed in parallel. Thus, if the
parallel processing is developed, then the speed of the join may be increased in proportion to
the number of the back-ends used. One may design a software back-end or a hardware back-end
for merging process that the host processor in HIMOD performs. The number of back-ends for
merging process can be multiple for some DBMS applications.

The multiple back-ends database computer would outperform the multiprocessor database
computer which uses a well known join methods, such as parallel nested-loop join, parallel sort-
merge join, and parallel hash join methods. None of the well known methods exploits the
filtering mechanism in their parallel join algorithms and none of these methods has an inherent
characteristic of parallel processing while the Shin’s parallel join algorithm has both advantages.
A comparative study of these parallel join methods, including Shin’s join algorithm, based on
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the measured response time, might provide a good direction for increasing the speed of the join.
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pop;
if No_More_Next Bucket_Addr then

]
if Bottom_Of Stack then
finish ;= true

clec
begin
m'o_Mom_Next_Bucket_Mdr then
begin
if Bottom_Of_Stack then
finish : = true
clsc
begin
mo_Mm_Nen_Bucket_Addr then
in
if Bottom_Of_Stack then
finish : = true
clec
' Source_And_Ti
Assi arget;
Save Next, Bucket, Addr:

begin
Assign _Source_And_Target;
Save_Next_Bucket_Addr;
push;
end
until finish;
end.

Figure 2. The Shin’s Join Algorithm
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Number of tuples in relations | Number of tuples
brought into the

processor
Discri- Source | Target | Result- | Shin’s Nested-
minator ing Join in Loop
HIMOD | Join
A 155 1,893 355 2,426 293,415
E 646 1,402 919 3,795 905,692
G 799 1,249 902 4,095 997,951
K 1,196 852 846 4,419 1,018,992
\' 1,961 87 205 2,902 170,607
Sums: 17,637 3,386,657

Table 1. Number of Tuples Brought into the Processor





